Flow and Heat or Mass Transfer in the Chemical Process Industry

Flow and Heat or Mass Transfer in the Chemical Process Industry
Author :
Publisher : MDPI
Total Pages : 215
Release :
ISBN-10 : 9783038972389
ISBN-13 : 303897238X
Rating : 4/5 (89 Downloads)

Synopsis Flow and Heat or Mass Transfer in the Chemical Process Industry by : Dimitrios V. Papavassiliou

This book is a printed edition of the Special Issue "Flow and Heat or Mass Transfer in the Chemical Process Industry" that was published in Fluids

Flow and Heat Or Mass Transfer in the Chemical Process Industry

Flow and Heat Or Mass Transfer in the Chemical Process Industry
Author :
Publisher :
Total Pages :
Release :
ISBN-10 : 3038972398
ISBN-13 : 9783038972396
Rating : 4/5 (98 Downloads)

Synopsis Flow and Heat Or Mass Transfer in the Chemical Process Industry by : Quoc T. Nguyen

Flow through process equipment in a chemical or manufacturing plant (e.g., heat exchangers, reactors, catalyst regeneration units, separation units, pumps, pipes, smoke stacks, et cetera) is usually coupled with heat and/or mass transfer. Rigorous investigation of this coupling of momentum, heat, and mass transfer is not only important for the practice of designing process equipment, but is also important for improving our overall theoretical understanding of transfer phenomena. While generalizations and empiricisms, like the concept of the heat transfer coefficient or the widely used Reynolds analogy in turbulence, or the use of empirical transfer equations for flow in separation towers and reactors packed with porous media, have served practical needs in prior decades, such empiricisms can now be revised or altogether replaced by bringing modern experimental and computational tools to bear in understanding the interplay between flow and transfer. The patterns of flow play a critical role in enhancing the transfer of heat and mass. Typical examples are the coherent flow structures in turbulent boundary layers, which are responsible for turbulent transfer and mixing in a heat exchanger and for dispersion from a smoke stack, and the flow patterns that are a function of the configuration of a porous medium and are responsible for transfer in a fixed bed reactor or a fluid bed regenerator unit. The goal of this Special Issue is to be a forum for recent developments in theory, state-of-the-art experiments and computations on the interactions between flow and transfer in single and multi-phase flow, and from small scales to large scales, which can be important for the design of equipment in a chemical processing plant.

Mass Transfer

Mass Transfer
Author :
Publisher : John Wiley & Sons
Total Pages : 290
Release :
ISBN-10 : 9783527609086
ISBN-13 : 3527609083
Rating : 4/5 (86 Downloads)

Synopsis Mass Transfer by : Koichi Asano

This didactic approach to the principles and modeling of mass transfer as it is needed in modern industrial processes is unique in combining a step-by-step introduction to all important fundamentals with the most recent applications. Based upon the renowned author's successful new modeling method as used for the O-18 process, the exemplary exercises included in the text are fact-proven, taken directly from existing chemical plants. Fascinating reading for chemists, graduate students, chemical and process engineers, as well as thermodynamics physicists.

Kern's Process Heat Transfer

Kern's Process Heat Transfer
Author :
Publisher : John Wiley & Sons
Total Pages : 726
Release :
ISBN-10 : 9781119364832
ISBN-13 : 1119364833
Rating : 4/5 (32 Downloads)

Synopsis Kern's Process Heat Transfer by : Ann Marie Flynn

This edition ensures the legacy of the original 1950 classic, Process Heat Transfer, by Donald Q. Kern that by many is held to be the gold standard. This second edition book is divided into three parts: Fundamental Principles; Heat Exchangers; and Other Heat Transfer Equipment/ Considerations. Part I provides a series of chapters concerned with introductory topics that are required when solving heat transfer problems. This part of the book deals with topics such as steady-state heat conduction, unsteady-state conduction, forced convection, free convection, and radiation. Part II is considered by the authors to be the "meat" of the book, and the primary reason for undertaking this project. Other than minor updates, Part II remains relatively unchanged from the first edition. Notably, it includes Kern's original design methodology for double-pipe, shell-and-tube, and extended surface heat exchangers. Part II also includes boiling and condensation, boilers, cooling towers and quenchers, as well as newly designed open-ended problems. Part III of the book examines other related topics of interest, including refrigeration and cryogenics, batch and unsteady-state processes, health & safety, and the accompanying topic of risk. In addition, this part also examines the impact of entropy calculations on exchanger design. A 36-page Appendix includes 12 tables of properties, layouts and design factors. WHAT IS NEW IN THE 2ND EDITION Changes that are addressed in the 2nd edition so that Kern's original work continues to remain relevant in 21st century process engineering include: Updated Heat Exchanger Design Increased Number of Illustrative Examples Energy Conservation/ Entropy Considerations Environmental Considerations Health & Safety Risk Assessment Refrigeration and Cryogenics

PRINCIPLES OF MASS TRANSFER AND SEPERATION PROCESSES

PRINCIPLES OF MASS TRANSFER AND SEPERATION PROCESSES
Author :
Publisher : PHI Learning Pvt. Ltd.
Total Pages : 957
Release :
ISBN-10 : 9788120329904
ISBN-13 : 8120329902
Rating : 4/5 (04 Downloads)

Synopsis PRINCIPLES OF MASS TRANSFER AND SEPERATION PROCESSES by : BINAY K. DUTTA

This textbook is targetted to undergraduate students in chemical engineering, chemical technology, and biochemical engineering for courses in mass transfer, separation processes, transport processes, and unit operations. The principles of mass transfer, both diffusional and convective have been comprehensively discussed. The application of these principles to separation processes is explained. The more common separation processes used in the chemical industries are individually described in separate chapters. The book also provides a good understanding of the construction, the operating principles, and the selection criteria of separation equipment. Recent developments in equipment have been included as far as possible. The procedure of equipment design and sizing has been illustrated by simple examples. An overview of different applications and aspects of membrane separation has also been provided. ‘Humidification and water cooling’, necessary in every process indus-try, is also described. Finally, elementary principles of ‘unsteady state diffusion’ and mass transfer accompanied by a chemical reaction are covered. SALIENT FEATURES : • A balanced coverage of theoretical principles and applications. • Important recent developments in mass transfer equipment and practice are included. • A large number of solved problems of varying levels of complexities showing the applications of the theory are included. • Many end-chapter exercises. • Chapter-wise multiple choice questions. • An Instructors manual for the teachers.

Chemical Engineering for the Food Industry

Chemical Engineering for the Food Industry
Author :
Publisher : Springer Science & Business Media
Total Pages : 481
Release :
ISBN-10 : 9781461538646
ISBN-13 : 1461538645
Rating : 4/5 (46 Downloads)

Synopsis Chemical Engineering for the Food Industry by : D. Leo Pyle

Industrial food processing involves the production of added value foods on a large scale; these foods are made by mixing and processing different ingredients in a prescribed way. The food industry, historically, has not designed its processes in an engineering sense, i.e. by understanding the physical and chemical principles which govern the operation of the plant and then using those principles to develop a process. Rather, processes have been 'designed' by purchasing equipment from a range of suppliers and then connecting that equipment together to form a complete process. When the process being run has essentially been scaled up from the kitchen then this may not matter. However, there are limits to the approach. • As the industry becomes more sophisticated, and economies of scale are exploited, then the size of plant reaches a scale where systematic design techniques are needed. • The range of processes and products made by the food industry has increased to include foods which have no kitchen counterpart, such as low-fat spreads. • It is vital to ensure the quality and safety of the product. • Plant must be flexible and able to cope with the need to make a variety of products from a range of ingredients. This is especially important as markets evolve with time. • The traditional design process cannot readily handle multi-product and multi-stream operations. • Processes must be energetically efficient and meet modern environmen tal standards.

Fluid Mechanics, Heat Transfer, and Mass Transfer

Fluid Mechanics, Heat Transfer, and Mass Transfer
Author :
Publisher : John Wiley & Sons
Total Pages : 1422
Release :
ISBN-10 : 9780470922927
ISBN-13 : 0470922923
Rating : 4/5 (27 Downloads)

Synopsis Fluid Mechanics, Heat Transfer, and Mass Transfer by : K. S. Raju

This broad-based book covers the three major areas of Chemical Engineering. Most of the books in the market involve one of the individual areas, namely, Fluid Mechanics, Heat Transfer or Mass Transfer, rather than all the three. This book presents this material in a single source. This avoids the user having to refer to a number of books to obtain information. Most published books covering all the three areas in a single source emphasize theory rather than practical issues. This book is written with emphasis on practice with brief theoretical concepts in the form of questions and answers, not adopting stereo-typed question-answer approach practiced in certain books in the market, bridging the two areas of theory and practice with respect to the core areas of chemical engineering. Most parts of the book are easily understandable by those who are not experts in the field. Fluid Mechanics chapters include basics on non-Newtonian systems which, for instance find importance in polymer and food processing, flow through piping, flow measurement, pumps, mixing technology and fluidization and two phase flow. For example it covers types of pumps and valves, membranes and areas of their use, different equipment commonly used in chemical industry and their merits and drawbacks. Heat Transfer chapters cover the basics involved in conduction, convection and radiation, with emphasis on insulation, heat exchangers, evaporators, condensers, reboilers and fired heaters. Design methods, performance, operational issues and maintenance problems are highlighted. Topics such as heat pipes, heat pumps, heat tracing, steam traps, refrigeration, cooling of electronic devices, NOx control find place in the book. Mass transfer chapters cover basics such as diffusion, theories, analogies, mass transfer coefficients and mass transfer with chemical reaction, equipment such as tray and packed columns, column internals including structural packings, design, operational and installation issues, drums and separators are discussed in good detail. Absorption, distillation, extraction and leaching with applications and design methods, including emerging practices involving Divided Wall and Petluk column arrangements, multicomponent separations, supercritical solvent extraction find place in the book.

Advanced Computational Techniques for Heat and Mass Transfer in Food Processing

Advanced Computational Techniques for Heat and Mass Transfer in Food Processing
Author :
Publisher : CRC Press
Total Pages : 315
Release :
ISBN-10 : 9781000521412
ISBN-13 : 1000521419
Rating : 4/5 (12 Downloads)

Synopsis Advanced Computational Techniques for Heat and Mass Transfer in Food Processing by : Krunal Gangawane

Computational methods have risen as a powerful technique for exploring the system phenomena and solving real-life problems. Currently, there are two principle computational approaches for system analysis: continuous and discrete. In the continuous approach, the governing equations can be obtained by applying the fundamental laws, such as conservation of mass, momentum, and energy over an infinitesimal control volume. On the other hand, the discrete approach concentrates on mimicking the molecular movement within the system. Both approaches have pros and cons, and continuous development and improvement in the existing computational methods are ongoing. Advanced Computational Techniques for Heat and Mass Transfer in Food Processing provides, in a single source, information on the use of methods based on numerical and computational analysis as applied in food science and technology. It explores the use of various numerical/computational techniques for the simulation of fluid flow and heat and mass transfer within food products. Key Features: Explores various numerical techniques used for modeling and validation Describes the knowhow of numerical and computational techniques for food process operations Covers a detailed numerical or computational approach of the principles of heat and mass transfer in the food processing operation Discusses the detailed computational simulation procedure of the food operation Recent years have witnessed a rapid development in the field of computational techniques owing to its abundant benefit to the food processing industry. The relevance of advanced computational methods has helped in understanding the fundamental physics of thermal and hydrodynamic behavior that can provide benefits to the food processing industry in numerous applications. As a single information source for those interested in the use of methods based on numerical and computational analysis as applied in food science and technology, this book will ably serve any food academician or researcher in learning the advanced numerical techniques exploring fluid flow, crystallization, and other food processing operations.

Fundamentals of Multiphase Heat Transfer and Flow

Fundamentals of Multiphase Heat Transfer and Flow
Author :
Publisher : Springer Nature
Total Pages : 840
Release :
ISBN-10 : 9783030221379
ISBN-13 : 3030221377
Rating : 4/5 (79 Downloads)

Synopsis Fundamentals of Multiphase Heat Transfer and Flow by : Amir Faghri

This textbook presents a modern treatment of fundamentals of heat and mass transfer in the context of all types of multiphase flows with possibility of phase-changes among solid, liquid and vapor. It serves equally as a textbook for undergraduate senior and graduate students in a wide variety of engineering disciplines including mechanical engineering, chemical engineering, material science and engineering, nuclear engineering, biomedical engineering, and environmental engineering. Multiphase Heat Transfer and Flow can also be used to teach contemporary and novel applications of heat and mass transfer. Concepts are reinforced with numerous examples and end-of-chapter problems. A solutions manual and PowerPoint presentation are available to instructors. While the book is designed for students, it is also very useful for practicing engineers working in technical areas related to both macro- and micro-scale systems that emphasize multiphase, multicomponent, and non-conventional geometries with coupled heat and mass transfer and phase change, with the possibility of full numerical simulation.