Finite Element and Discontinuous Galerkin Methods for Transient Wave Equations

Finite Element and Discontinuous Galerkin Methods for Transient Wave Equations
Author :
Publisher : Springer
Total Pages : 393
Release :
ISBN-10 : 9789401777612
ISBN-13 : 9401777616
Rating : 4/5 (12 Downloads)

Synopsis Finite Element and Discontinuous Galerkin Methods for Transient Wave Equations by : Gary Cohen

This monograph presents numerical methods for solving transient wave equations (i.e. in time domain). More precisely, it provides an overview of continuous and discontinuous finite element methods for these equations, including their implementation in physical models, an extensive description of 2D and 3D elements with different shapes, such as prisms or pyramids, an analysis of the accuracy of the methods and the study of the Maxwell’s system and the important problem of its spurious free approximations. After recalling the classical models, i.e. acoustics, linear elastodynamics and electromagnetism and their variational formulations, the authors present a wide variety of finite elements of different shapes useful for the numerical resolution of wave equations. Then, they focus on the construction of efficient continuous and discontinuous Galerkin methods and study their accuracy by plane wave techniques and a priori error estimates. A chapter is devoted to the Maxwell’s system and the important problem of its spurious-free approximations. Treatment of unbounded domains by Absorbing Boundary Conditions (ABC) and Perfectly Matched Layers (PML) is described and analyzed in a separate chapter. The two last chapters deal with time approximation including local time-stepping and with the study of some complex models, i.e. acoustics in flow, gravity waves and vibrating thin plates. Throughout, emphasis is put on the accuracy and computational efficiency of the methods, with attention brought to their practical aspects.This monograph also covers in details the theoretical foundations and numerical analysis of these methods. As a result, this monograph will be of interest to practitioners, researchers, engineers and graduate students involved in the numerical simulationof waves.

Hybrid High-Order Methods

Hybrid High-Order Methods
Author :
Publisher : Springer Nature
Total Pages : 138
Release :
ISBN-10 : 9783030814779
ISBN-13 : 3030814777
Rating : 4/5 (79 Downloads)

Synopsis Hybrid High-Order Methods by : Matteo Cicuttin

This book provides a comprehensive coverage of hybrid high-order methods for computational mechanics. The first three chapters offer a gentle introduction to the method and its mathematical foundations for the diffusion problem. The next four chapters address applications of increasing complexity in the field of computational mechanics: linear elasticity, hyperelasticity, wave propagation, contact, friction, and plasticity. The last chapter provides an overview of the main implementation aspects including some examples of Matlab code. The book is primarily intended for graduate students, researchers, and engineers working in related fields of application, and it can also be used as a support for graduate and doctoral lectures.

Direct and Inverse Problems in Wave Propagation and Applications

Direct and Inverse Problems in Wave Propagation and Applications
Author :
Publisher : Walter de Gruyter
Total Pages : 328
Release :
ISBN-10 : 9783110282283
ISBN-13 : 3110282283
Rating : 4/5 (83 Downloads)

Synopsis Direct and Inverse Problems in Wave Propagation and Applications by : Ivan Graham

This book is the third volume of three volume series recording the "Radon Special Semester 2011 on Multiscale Simulation & Analysis in Energy and the Environment" taking place in Linz, Austria, October 3-7, 2011. This book surveys recent developments in the analysis of wave propagation problems. The topics covered include aspects of the forward problem and problems in inverse problems, as well as applications in the earth sciences. Wave propagation problems are ubiquitous in environmental applications such as seismic analysis, acoustic and electromagnetic scattering. The design of efficient numerical methods for the forward problem, in which the scattered field is computed from known geometric configurations is very challenging due to the multiscale nature of the problems. Even more challenging are inverse problems where material parameters and configurations have to be determined from measurements in conjunction with the forward problem. This book contains review articles covering several state-of-the-art numerical methods for both forward and inverse problems. This collection of survey articles focusses on the efficient computation of wave propagation and scattering is a core problem in numerical mathematics, which is currently of great research interest and is central to many applications in energy and the environment. Two generic applications which resonate strongly with the central aims of the Radon Special Semester 2011 are forward wave propagation in heterogeneous media and seismic inversion for subsurface imaging. As an example of the first application, modelling of absorption and scattering of radiation by clouds, aerosol and precipitation is used as a tool for interpretation of (e.g.) solar, infrared and radar measurements, and as a component in larger weather/climate prediction models in numerical weather forecasting. As an example of the second application, inverse problems in wave propagation in heterogeneous media arise in the problem of imaging the subsurface below land or marine deposits. The book records the achievements of Workshop 3 "Wave Propagation and Scattering, Inverse Problems and Applications in Energy and the Environment". It brings together key numerical mathematicians whose interest is in the analysis and computation of wave propagation and scattering problems, and in inverse problems, together with practitioners from engineering and industry whose interest is in the applications of these core problems.

Computational Acoustics of Noise Propagation in Fluids - Finite and Boundary Element Methods

Computational Acoustics of Noise Propagation in Fluids - Finite and Boundary Element Methods
Author :
Publisher : Springer Science & Business Media
Total Pages : 584
Release :
ISBN-10 : 9783540774488
ISBN-13 : 3540774483
Rating : 4/5 (88 Downloads)

Synopsis Computational Acoustics of Noise Propagation in Fluids - Finite and Boundary Element Methods by : Steffen Marburg

The book provides a survey of numerical methods for acoustics, namely the finite element method (FEM) and the boundary element method (BEM). It is the first book summarizing FEM and BEM (and optimization) for acoustics. The book shows that both methods can be effectively used for many other cases, FEM even for open domains and BEM for closed ones. Emphasis of the book is put on numerical aspects and on treatment of the exterior problem in acoustics, i.e. noise radiation.

Finite Elements III

Finite Elements III
Author :
Publisher : Springer Nature
Total Pages : 417
Release :
ISBN-10 : 9783030573485
ISBN-13 : 3030573486
Rating : 4/5 (85 Downloads)

Synopsis Finite Elements III by : Alexandre Ern

This book is the third volume of a three-part textbook suitable for graduate coursework, professional engineering and academic research. It is also appropriate for graduate flipped classes. Each volume is divided into short chapters. Each chapter can be covered in one teaching unit and includes exercises as well as solutions available from a dedicated website. The salient ideas can be addressed during lecture, with the rest of the content assigned as reading material. To engage the reader, the text combines examples, basic ideas, rigorous proofs, and pointers to the literature to enhance scientific literacy. Volume III is divided into 28 chapters. The first eight chapters focus on the symmetric positive systems of first-order PDEs called Friedrichs' systems. This part of the book presents a comprehensive and unified treatment of various stabilization techniques from the existing literature. It discusses applications to advection and advection-diffusion equations and various PDEs written in mixed form such as Darcy and Stokes flows and Maxwell's equations. The remainder of Volume III addresses time-dependent problems: parabolic equations (such as the heat equation), evolution equations without coercivity (Stokes flows, Friedrichs' systems), and nonlinear hyperbolic equations (scalar conservation equations, hyperbolic systems). It offers a fresh perspective on the analysis of well-known time-stepping methods. The last five chapters discuss the approximation of hyperbolic equations with finite elements. Here again a new perspective is proposed. These chapters should convince the reader that finite elements offer a good alternative to finite volumes to solve nonlinear conservation equations.

The Finite Element Method Set

The Finite Element Method Set
Author :
Publisher : Elsevier
Total Pages : 1863
Release :
ISBN-10 : 9780080531670
ISBN-13 : 0080531679
Rating : 4/5 (70 Downloads)

Synopsis The Finite Element Method Set by : O. C. Zienkiewicz

The sixth editions of these seminal books deliver the most up to date and comprehensive reference yet on the finite element method for all engineers and mathematicians. Renowned for their scope, range and authority, the new editions have been significantly developed in terms of both contents and scope. Each book is now complete in its own right and provides self-contained reference; used together they provide a formidable resource covering the theory and the application of the universally used FEM. Written by the leading professors in their fields, the three books cover the basis of the method, its application to solid mechanics and to fluid dynamics.* This is THE classic finite element method set, by two the subject's leading authors * FEM is a constantly developing subject, and any professional or student of engineering involved in understanding the computational modelling of physical systems will inevitably use the techniques in these books * Fully up-to-date; ideal for teaching and reference

Frontiers in Numerical Analysis - Durham 2010

Frontiers in Numerical Analysis - Durham 2010
Author :
Publisher : Springer Science & Business Media
Total Pages : 298
Release :
ISBN-10 : 9783642239144
ISBN-13 : 3642239145
Rating : 4/5 (44 Downloads)

Synopsis Frontiers in Numerical Analysis - Durham 2010 by : James Blowey

This book contains detailed lecture notes on four topics at the forefront of current research in computational mathematics. Each set of notes presents a self-contained guide to a current research area and has an extensive bibliography. In addition, most of the notes contain detailed proofs of the key results. The notes start from a level suitable for first year graduate students in applied mathematics, mathematical analysis or numerical analysis, and proceed to current research topics. The reader should therefore be able to gain quickly an insight into the important results and techniques in each area without recourse to the large research literature. Current (unsolved) problems are also described and directions for future research are given. This book is also suitable for professional mathematicians who require a succint and accurate account of recent research in areas parallel to their own, and graduates in mathematical sciences.

Large-Scale Structures in Acoustics and Electromagnetics

Large-Scale Structures in Acoustics and Electromagnetics
Author :
Publisher : National Academies Press
Total Pages : 265
Release :
ISBN-10 : 9780309053372
ISBN-13 : 0309053374
Rating : 4/5 (72 Downloads)

Synopsis Large-Scale Structures in Acoustics and Electromagnetics by : National Research Council

This book focuses on computational methods to determine the dynamics of large-scale electromagnetic, acoustic, and mechanical systems, including those with many substructures and characterized by an extended range of scales. Examples include large naval and maritime vessels, aerospace vehicles, and densely packed microelectronic and optical integrated circuits (VLSI). The interplay of time and frequency-domain computational and experimental procedures was addressed, emphasizing their relationship and synergy, and indicating mathematics research opportunities.

The Leading Edge

The Leading Edge
Author :
Publisher :
Total Pages : 550
Release :
ISBN-10 : STANFORD:36105132738720
ISBN-13 :
Rating : 4/5 (20 Downloads)

Synopsis The Leading Edge by :

Decomposition Methods for Differential Equations

Decomposition Methods for Differential Equations
Author :
Publisher : CRC Press
Total Pages : 320
Release :
ISBN-10 : 9781439810972
ISBN-13 : 1439810974
Rating : 4/5 (72 Downloads)

Synopsis Decomposition Methods for Differential Equations by : Juergen Geiser

Decomposition Methods for Differential Equations: Theory and Applications describes the analysis of numerical methods for evolution equations based on temporal and spatial decomposition methods. It covers real-life problems, the underlying decomposition and discretization, the stability and consistency analysis of the decomposition methods, and num