Fast Data Processing With Spark 2
Download Fast Data Processing With Spark 2 full books in PDF, epub, and Kindle. Read online free Fast Data Processing With Spark 2 ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads.
Author |
: Krishna Sankar |
Publisher |
: Packt Publishing Ltd |
Total Pages |
: 269 |
Release |
: 2016-10-24 |
ISBN-10 |
: 9781785882968 |
ISBN-13 |
: 1785882961 |
Rating |
: 4/5 (68 Downloads) |
Synopsis Fast Data Processing with Spark 2 by : Krishna Sankar
Learn how to use Spark to process big data at speed and scale for sharper analytics. Put the principles into practice for faster, slicker big data projects. About This Book A quick way to get started with Spark – and reap the rewards From analytics to engineering your big data architecture, we've got it covered Bring your Scala and Java knowledge – and put it to work on new and exciting problems Who This Book Is For This book is for developers with little to no knowledge of Spark, but with a background in Scala/Java programming. It's recommended that you have experience in dealing and working with big data and a strong interest in data science. What You Will Learn Install and set up Spark in your cluster Prototype distributed applications with Spark's interactive shell Perform data wrangling using the new DataFrame APIs Get to know the different ways to interact with Spark's distributed representation of data (RDDs) Query Spark with a SQL-like query syntax See how Spark works with big data Implement machine learning systems with highly scalable algorithms Use R, the popular statistical language, to work with Spark Apply interesting graph algorithms and graph processing with GraphX In Detail When people want a way to process big data at speed, Spark is invariably the solution. With its ease of development (in comparison to the relative complexity of Hadoop), it's unsurprising that it's becoming popular with data analysts and engineers everywhere. Beginning with the fundamentals, we'll show you how to get set up with Spark with minimum fuss. You'll then get to grips with some simple APIs before investigating machine learning and graph processing – throughout we'll make sure you know exactly how to apply your knowledge. You will also learn how to use the Spark shell, how to load data before finding out how to build and run your own Spark applications. Discover how to manipulate your RDD and get stuck into a range of DataFrame APIs. As if that's not enough, you'll also learn some useful Machine Learning algorithms with the help of Spark MLlib and integrating Spark with R. We'll also make sure you're confident and prepared for graph processing, as you learn more about the GraphX API. Style and approach This book is a basic, step-by-step tutorial that will help you take advantage of all that Spark has to offer.
Author |
: Holden Karau |
Publisher |
: "O'Reilly Media, Inc." |
Total Pages |
: 289 |
Release |
: 2015-01-28 |
ISBN-10 |
: 9781449359058 |
ISBN-13 |
: 1449359051 |
Rating |
: 4/5 (58 Downloads) |
Synopsis Learning Spark by : Holden Karau
Data in all domains is getting bigger. How can you work with it efficiently? Recently updated for Spark 1.3, this book introduces Apache Spark, the open source cluster computing system that makes data analytics fast to write and fast to run. With Spark, you can tackle big datasets quickly through simple APIs in Python, Java, and Scala. This edition includes new information on Spark SQL, Spark Streaming, setup, and Maven coordinates. Written by the developers of Spark, this book will have data scientists and engineers up and running in no time. You’ll learn how to express parallel jobs with just a few lines of code, and cover applications from simple batch jobs to stream processing and machine learning. Quickly dive into Spark capabilities such as distributed datasets, in-memory caching, and the interactive shell Leverage Spark’s powerful built-in libraries, including Spark SQL, Spark Streaming, and MLlib Use one programming paradigm instead of mixing and matching tools like Hive, Hadoop, Mahout, and Storm Learn how to deploy interactive, batch, and streaming applications Connect to data sources including HDFS, Hive, JSON, and S3 Master advanced topics like data partitioning and shared variables
Author |
: Muhammad Asif Abbasi |
Publisher |
: Packt Publishing Ltd |
Total Pages |
: 349 |
Release |
: 2017-03-28 |
ISBN-10 |
: 9781785889585 |
ISBN-13 |
: 1785889583 |
Rating |
: 4/5 (85 Downloads) |
Synopsis Learning Apache Spark 2 by : Muhammad Asif Abbasi
Learn about the fastest-growing open source project in the world, and find out how it revolutionizes big data analytics About This Book Exclusive guide that covers how to get up and running with fast data processing using Apache Spark Explore and exploit various possibilities with Apache Spark using real-world use cases in this book Want to perform efficient data processing at real time? This book will be your one-stop solution. Who This Book Is For This guide appeals to big data engineers, analysts, architects, software engineers, even technical managers who need to perform efficient data processing on Hadoop at real time. Basic familiarity with Java or Scala will be helpful. The assumption is that readers will be from a mixed background, but would be typically people with background in engineering/data science with no prior Spark experience and want to understand how Spark can help them on their analytics journey. What You Will Learn Get an overview of big data analytics and its importance for organizations and data professionals Delve into Spark to see how it is different from existing processing platforms Understand the intricacies of various file formats, and how to process them with Apache Spark. Realize how to deploy Spark with YARN, MESOS or a Stand-alone cluster manager. Learn the concepts of Spark SQL, SchemaRDD, Caching and working with Hive and Parquet file formats Understand the architecture of Spark MLLib while discussing some of the off-the-shelf algorithms that come with Spark. Introduce yourself to the deployment and usage of SparkR. Walk through the importance of Graph computation and the graph processing systems available in the market Check the real world example of Spark by building a recommendation engine with Spark using ALS. Use a Telco data set, to predict customer churn using Random Forests. In Detail Spark juggernaut keeps on rolling and getting more and more momentum each day. Spark provides key capabilities in the form of Spark SQL, Spark Streaming, Spark ML and Graph X all accessible via Java, Scala, Python and R. Deploying the key capabilities is crucial whether it is on a Standalone framework or as a part of existing Hadoop installation and configuring with Yarn and Mesos. The next part of the journey after installation is using key components, APIs, Clustering, machine learning APIs, data pipelines, parallel programming. It is important to understand why each framework component is key, how widely it is being used, its stability and pertinent use cases. Once we understand the individual components, we will take a couple of real life advanced analytics examples such as 'Building a Recommendation system', 'Predicting customer churn' and so on. The objective of these real life examples is to give the reader confidence of using Spark for real-world problems. Style and approach With the help of practical examples and real-world use cases, this guide will take you from scratch to building efficient data applications using Apache Spark. You will learn all about this excellent data processing engine in a step-by-step manner, taking one aspect of it at a time. This highly practical guide will include how to work with data pipelines, dataframes, clustering, SparkSQL, parallel programming, and such insightful topics with the help of real-world use cases.
Author |
: Jules S. Damji |
Publisher |
: O'Reilly Media |
Total Pages |
: 400 |
Release |
: 2020-07-16 |
ISBN-10 |
: 9781492050018 |
ISBN-13 |
: 1492050016 |
Rating |
: 4/5 (18 Downloads) |
Synopsis Learning Spark by : Jules S. Damji
Data is bigger, arrives faster, and comes in a variety of formats—and it all needs to be processed at scale for analytics or machine learning. But how can you process such varied workloads efficiently? Enter Apache Spark. Updated to include Spark 3.0, this second edition shows data engineers and data scientists why structure and unification in Spark matters. Specifically, this book explains how to perform simple and complex data analytics and employ machine learning algorithms. Through step-by-step walk-throughs, code snippets, and notebooks, you’ll be able to: Learn Python, SQL, Scala, or Java high-level Structured APIs Understand Spark operations and SQL Engine Inspect, tune, and debug Spark operations with Spark configurations and Spark UI Connect to data sources: JSON, Parquet, CSV, Avro, ORC, Hive, S3, or Kafka Perform analytics on batch and streaming data using Structured Streaming Build reliable data pipelines with open source Delta Lake and Spark Develop machine learning pipelines with MLlib and productionize models using MLflow
Author |
: Bill Chambers |
Publisher |
: "O'Reilly Media, Inc." |
Total Pages |
: 594 |
Release |
: 2018-02-08 |
ISBN-10 |
: 9781491912294 |
ISBN-13 |
: 1491912294 |
Rating |
: 4/5 (94 Downloads) |
Synopsis Spark: The Definitive Guide by : Bill Chambers
Learn how to use, deploy, and maintain Apache Spark with this comprehensive guide, written by the creators of the open-source cluster-computing framework. With an emphasis on improvements and new features in Spark 2.0, authors Bill Chambers and Matei Zaharia break down Spark topics into distinct sections, each with unique goals. Youâ??ll explore the basic operations and common functions of Sparkâ??s structured APIs, as well as Structured Streaming, a new high-level API for building end-to-end streaming applications. Developers and system administrators will learn the fundamentals of monitoring, tuning, and debugging Spark, and explore machine learning techniques and scenarios for employing MLlib, Sparkâ??s scalable machine-learning library. Get a gentle overview of big data and Spark Learn about DataFrames, SQL, and Datasetsâ??Sparkâ??s core APIsâ??through worked examples Dive into Sparkâ??s low-level APIs, RDDs, and execution of SQL and DataFrames Understand how Spark runs on a cluster Debug, monitor, and tune Spark clusters and applications Learn the power of Structured Streaming, Sparkâ??s stream-processing engine Learn how you can apply MLlib to a variety of problems, including classification or recommendation
Author |
: Srini Penchikala |
Publisher |
: Lulu.com |
Total Pages |
: 106 |
Release |
: 2018-03-13 |
ISBN-10 |
: 9781387659951 |
ISBN-13 |
: 1387659952 |
Rating |
: 4/5 (51 Downloads) |
Synopsis Big Data Processing with Apache Spark by : Srini Penchikala
Apache Spark is a popular open-source big-data processing framework thatÕs built around speed, ease of use, and unified distributed computing architecture. Not only it supports developing applications in different languages like Java, Scala, Python, and R, itÕs also hundred times faster in memory and ten times faster even when running on disk compared to traditional data processing frameworks. Whether you are currently working on a big data project or interested in learning more about topics like machine learning, streaming data processing, and graph data analytics, this book is for you. You can learn about Apache Spark and develop Spark programs for various use cases in big data analytics using the code examples provided. This book covers all the libraries in Spark ecosystem: Spark Core, Spark SQL, Spark Streaming, Spark ML, and Spark GraphX.
Author |
: Rishi Yadav |
Publisher |
: Packt Publishing Ltd |
Total Pages |
: 288 |
Release |
: 2017-05-31 |
ISBN-10 |
: 9781787127517 |
ISBN-13 |
: 1787127516 |
Rating |
: 4/5 (17 Downloads) |
Synopsis Apache Spark 2.x Cookbook by : Rishi Yadav
Over 70 recipes to help you use Apache Spark as your single big data computing platform and master its libraries About This Book This book contains recipes on how to use Apache Spark as a unified compute engine Cover how to connect various source systems to Apache Spark Covers various parts of machine learning including supervised/unsupervised learning & recommendation engines Who This Book Is For This book is for data engineers, data scientists, and those who want to implement Spark for real-time data processing. Anyone who is using Spark (or is planning to) will benefit from this book. The book assumes you have a basic knowledge of Scala as a programming language. What You Will Learn Install and configure Apache Spark with various cluster managers & on AWS Set up a development environment for Apache Spark including Databricks Cloud notebook Find out how to operate on data in Spark with schemas Get to grips with real-time streaming analytics using Spark Streaming & Structured Streaming Master supervised learning and unsupervised learning using MLlib Build a recommendation engine using MLlib Graph processing using GraphX and GraphFrames libraries Develop a set of common applications or project types, and solutions that solve complex big data problems In Detail While Apache Spark 1.x gained a lot of traction and adoption in the early years, Spark 2.x delivers notable improvements in the areas of API, schema awareness, Performance, Structured Streaming, and simplifying building blocks to build better, faster, smarter, and more accessible big data applications. This book uncovers all these features in the form of structured recipes to analyze and mature large and complex sets of data. Starting with installing and configuring Apache Spark with various cluster managers, you will learn to set up development environments. Further on, you will be introduced to working with RDDs, DataFrames and Datasets to operate on schema aware data, and real-time streaming with various sources such as Twitter Stream and Apache Kafka. You will also work through recipes on machine learning, including supervised learning, unsupervised learning & recommendation engines in Spark. Last but not least, the final few chapters delve deeper into the concepts of graph processing using GraphX, securing your implementations, cluster optimization, and troubleshooting. Style and approach This book is packed with intuitive recipes supported with line-by-line explanations to help you understand Spark 2.x's real-time processing capabilities and deploy scalable big data solutions. This is a valuable resource for data scientists and those working on large-scale data projects.
Author |
: Javier Luraschi |
Publisher |
: "O'Reilly Media, Inc." |
Total Pages |
: 296 |
Release |
: 2019-10-07 |
ISBN-10 |
: 9781492046325 |
ISBN-13 |
: 1492046329 |
Rating |
: 4/5 (25 Downloads) |
Synopsis Mastering Spark with R by : Javier Luraschi
If you’re like most R users, you have deep knowledge and love for statistics. But as your organization continues to collect huge amounts of data, adding tools such as Apache Spark makes a lot of sense. With this practical book, data scientists and professionals working with large-scale data applications will learn how to use Spark from R to tackle big data and big compute problems. Authors Javier Luraschi, Kevin Kuo, and Edgar Ruiz show you how to use R with Spark to solve different data analysis problems. This book covers relevant data science topics, cluster computing, and issues that should interest even the most advanced users. Analyze, explore, transform, and visualize data in Apache Spark with R Create statistical models to extract information and predict outcomes; automate the process in production-ready workflows Perform analysis and modeling across many machines using distributed computing techniques Use large-scale data from multiple sources and different formats with ease from within Spark Learn about alternative modeling frameworks for graph processing, geospatial analysis, and genomics at scale Dive into advanced topics including custom transformations, real-time data processing, and creating custom Spark extensions
Author |
: Raul Estrada |
Publisher |
: Packt Publishing Ltd |
Total Pages |
: 371 |
Release |
: 2016-12-22 |
ISBN-10 |
: 9781786468062 |
ISBN-13 |
: 1786468069 |
Rating |
: 4/5 (62 Downloads) |
Synopsis Fast Data Processing Systems with SMACK Stack by : Raul Estrada
Combine the incredible powers of Spark, Mesos, Akka, Cassandra, and Kafka to build data processing platforms that can take on even the hardest of your data troubles! About This Book This highly practical guide shows you how to use the best of the big data technologies to solve your response-critical problems Learn the art of making cheap-yet-effective big data architecture without using complex Greek-letter architectures Use this easy-to-follow guide to build fast data processing systems for your organization Who This Book Is For If you are a developer, data architect, or a data scientist looking for information on how to integrate the Big Data stack architecture and how to choose the correct technology in every layer, this book is what you are looking for. What You Will Learn Design and implement a fast data Pipeline architecture Think and solve programming challenges in a functional way with Scala Learn to use Akka, the actors model implementation for the JVM Make on memory processing and data analysis with Spark to solve modern business demands Build a powerful and effective cluster infrastructure with Mesos and Docker Manage and consume unstructured and No-SQL data sources with Cassandra Consume and produce messages in a massive way with Kafka In Detail SMACK is an open source full stack for big data architecture. It is a combination of Spark, Mesos, Akka, Cassandra, and Kafka. This stack is the newest technique developers have begun to use to tackle critical real-time analytics for big data. This highly practical guide will teach you how to integrate these technologies to create a highly efficient data analysis system for fast data processing. We'll start off with an introduction to SMACK and show you when to use it. First you'll get to grips with functional thinking and problem solving using Scala. Next you'll come to understand the Akka architecture. Then you'll get to know how to improve the data structure architecture and optimize resources using Apache Spark. Moving forward, you'll learn how to perform linear scalability in databases with Apache Cassandra. You'll grasp the high throughput distributed messaging systems using Apache Kafka. We'll show you how to build a cheap but effective cluster infrastructure with Apache Mesos. Finally, you will deep dive into the different aspect of SMACK using a few case studies. By the end of the book, you will be able to integrate all the components of the SMACK stack and use them together to achieve highly effective and fast data processing. Style and approach With the help of various industry examples, you will learn about the full stack of big data architecture, taking the important aspects in every technology. You will learn how to integrate the technologies to build effective systems rather than getting incomplete information on single technologies. You will learn how various open source technologies can be used to build cheap and fast data processing systems with the help of various industry examples
Author |
: Md. Rezaul Karim |
Publisher |
: Packt Publishing Ltd |
Total Pages |
: 786 |
Release |
: 2017-07-25 |
ISBN-10 |
: 9781783550500 |
ISBN-13 |
: 1783550503 |
Rating |
: 4/5 (00 Downloads) |
Synopsis Scala and Spark for Big Data Analytics by : Md. Rezaul Karim
Harness the power of Scala to program Spark and analyze tonnes of data in the blink of an eye! About This Book Learn Scala's sophisticated type system that combines Functional Programming and object-oriented concepts Work on a wide array of applications, from simple batch jobs to stream processing and machine learning Explore the most common as well as some complex use-cases to perform large-scale data analysis with Spark Who This Book Is For Anyone who wishes to learn how to perform data analysis by harnessing the power of Spark will find this book extremely useful. No knowledge of Spark or Scala is assumed, although prior programming experience (especially with other JVM languages) will be useful to pick up concepts quicker. What You Will Learn Understand object-oriented & functional programming concepts of Scala In-depth understanding of Scala collection APIs Work with RDD and DataFrame to learn Spark's core abstractions Analysing structured and unstructured data using SparkSQL and GraphX Scalable and fault-tolerant streaming application development using Spark structured streaming Learn machine-learning best practices for classification, regression, dimensionality reduction, and recommendation system to build predictive models with widely used algorithms in Spark MLlib & ML Build clustering models to cluster a vast amount of data Understand tuning, debugging, and monitoring Spark applications Deploy Spark applications on real clusters in Standalone, Mesos, and YARN In Detail Scala has been observing wide adoption over the past few years, especially in the field of data science and analytics. Spark, built on Scala, has gained a lot of recognition and is being used widely in productions. Thus, if you want to leverage the power of Scala and Spark to make sense of big data, this book is for you. The first part introduces you to Scala, helping you understand the object-oriented and functional programming concepts needed for Spark application development. It then moves on to Spark to cover the basic abstractions using RDD and DataFrame. This will help you develop scalable and fault-tolerant streaming applications by analyzing structured and unstructured data using SparkSQL, GraphX, and Spark structured streaming. Finally, the book moves on to some advanced topics, such as monitoring, configuration, debugging, testing, and deployment. You will also learn how to develop Spark applications using SparkR and PySpark APIs, interactive data analytics using Zeppelin, and in-memory data processing with Alluxio. By the end of this book, you will have a thorough understanding of Spark, and you will be able to perform full-stack data analytics with a feel that no amount of data is too big. Style and approach Filled with practical examples and use cases, this book will hot only help you get up and running with Spark, but will also take you farther down the road to becoming a data scientist.