Explainable And Interpretable Models In Computer Vision And Machine Learning
Download Explainable And Interpretable Models In Computer Vision And Machine Learning full books in PDF, epub, and Kindle. Read online free Explainable And Interpretable Models In Computer Vision And Machine Learning ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads.
Author |
: Hugo Jair Escalante |
Publisher |
: Springer |
Total Pages |
: 305 |
Release |
: 2018-11-29 |
ISBN-10 |
: 9783319981314 |
ISBN-13 |
: 3319981315 |
Rating |
: 4/5 (14 Downloads) |
Synopsis Explainable and Interpretable Models in Computer Vision and Machine Learning by : Hugo Jair Escalante
This book compiles leading research on the development of explainable and interpretable machine learning methods in the context of computer vision and machine learning. Research progress in computer vision and pattern recognition has led to a variety of modeling techniques with almost human-like performance. Although these models have obtained astounding results, they are limited in their explainability and interpretability: what is the rationale behind the decision made? what in the model structure explains its functioning? Hence, while good performance is a critical required characteristic for learning machines, explainability and interpretability capabilities are needed to take learning machines to the next step to include them in decision support systems involving human supervision. This book, written by leading international researchers, addresses key topics of explainability and interpretability, including the following: · Evaluation and Generalization in Interpretable Machine Learning · Explanation Methods in Deep Learning · Learning Functional Causal Models with Generative Neural Networks · Learning Interpreatable Rules for Multi-Label Classification · Structuring Neural Networks for More Explainable Predictions · Generating Post Hoc Rationales of Deep Visual Classification Decisions · Ensembling Visual Explanations · Explainable Deep Driving by Visualizing Causal Attention · Interdisciplinary Perspective on Algorithmic Job Candidate Search · Multimodal Personality Trait Analysis for Explainable Modeling of Job Interview Decisions · Inherent Explainability Pattern Theory-based Video Event Interpretations
Author |
: Christoph Molnar |
Publisher |
: Lulu.com |
Total Pages |
: 320 |
Release |
: 2020 |
ISBN-10 |
: 9780244768522 |
ISBN-13 |
: 0244768528 |
Rating |
: 4/5 (22 Downloads) |
Synopsis Interpretable Machine Learning by : Christoph Molnar
This book is about making machine learning models and their decisions interpretable. After exploring the concepts of interpretability, you will learn about simple, interpretable models such as decision trees, decision rules and linear regression. Later chapters focus on general model-agnostic methods for interpreting black box models like feature importance and accumulated local effects and explaining individual predictions with Shapley values and LIME. All interpretation methods are explained in depth and discussed critically. How do they work under the hood? What are their strengths and weaknesses? How can their outputs be interpreted? This book will enable you to select and correctly apply the interpretation method that is most suitable for your machine learning project.
Author |
: Wojciech Samek |
Publisher |
: Springer Nature |
Total Pages |
: 435 |
Release |
: 2019-09-10 |
ISBN-10 |
: 9783030289546 |
ISBN-13 |
: 3030289540 |
Rating |
: 4/5 (46 Downloads) |
Synopsis Explainable AI: Interpreting, Explaining and Visualizing Deep Learning by : Wojciech Samek
The development of “intelligent” systems that can take decisions and perform autonomously might lead to faster and more consistent decisions. A limiting factor for a broader adoption of AI technology is the inherent risks that come with giving up human control and oversight to “intelligent” machines. For sensitive tasks involving critical infrastructures and affecting human well-being or health, it is crucial to limit the possibility of improper, non-robust and unsafe decisions and actions. Before deploying an AI system, we see a strong need to validate its behavior, and thus establish guarantees that it will continue to perform as expected when deployed in a real-world environment. In pursuit of that objective, ways for humans to verify the agreement between the AI decision structure and their own ground-truth knowledge have been explored. Explainable AI (XAI) has developed as a subfield of AI, focused on exposing complex AI models to humans in a systematic and interpretable manner. The 22 chapters included in this book provide a timely snapshot of algorithms, theory, and applications of interpretable and explainable AI and AI techniques that have been proposed recently reflecting the current discourse in this field and providing directions of future development. The book is organized in six parts: towards AI transparency; methods for interpreting AI systems; explaining the decisions of AI systems; evaluating interpretability and explanations; applications of explainable AI; and software for explainable AI.
Author |
: Leonida Gianfagna |
Publisher |
: Springer Nature |
Total Pages |
: 202 |
Release |
: 2021-04-28 |
ISBN-10 |
: 9783030686406 |
ISBN-13 |
: 303068640X |
Rating |
: 4/5 (06 Downloads) |
Synopsis Explainable AI with Python by : Leonida Gianfagna
This book provides a full presentation of the current concepts and available techniques to make “machine learning” systems more explainable. The approaches presented can be applied to almost all the current “machine learning” models: linear and logistic regression, deep learning neural networks, natural language processing and image recognition, among the others. Progress in Machine Learning is increasing the use of artificial agents to perform critical tasks previously handled by humans (healthcare, legal and finance, among others). While the principles that guide the design of these agents are understood, most of the current deep-learning models are "opaque" to human understanding. Explainable AI with Python fills the current gap in literature on this emerging topic by taking both a theoretical and a practical perspective, making the reader quickly capable of working with tools and code for Explainable AI. Beginning with examples of what Explainable AI (XAI) is and why it is needed in the field, the book details different approaches to XAI depending on specific context and need. Hands-on work on interpretable models with specific examples leveraging Python are then presented, showing how intrinsic interpretable models can be interpreted and how to produce “human understandable” explanations. Model-agnostic methods for XAI are shown to produce explanations without relying on ML models internals that are “opaque.” Using examples from Computer Vision, the authors then look at explainable models for Deep Learning and prospective methods for the future. Taking a practical perspective, the authors demonstrate how to effectively use ML and XAI in science. The final chapter explains Adversarial Machine Learning and how to do XAI with adversarial examples.
Author |
: Pradeepta Mishra |
Publisher |
: Apress |
Total Pages |
: 344 |
Release |
: 2021-12-15 |
ISBN-10 |
: 1484271572 |
ISBN-13 |
: 9781484271575 |
Rating |
: 4/5 (72 Downloads) |
Synopsis Practical Explainable AI Using Python by : Pradeepta Mishra
Learn the ins and outs of decisions, biases, and reliability of AI algorithms and how to make sense of these predictions. This book explores the so-called black-box models to boost the adaptability, interpretability, and explainability of the decisions made by AI algorithms using frameworks such as Python XAI libraries, TensorFlow 2.0+, Keras, and custom frameworks using Python wrappers. You'll begin with an introduction to model explainability and interpretability basics, ethical consideration, and biases in predictions generated by AI models. Next, you'll look at methods and systems to interpret linear, non-linear, and time-series models used in AI. The book will also cover topics ranging from interpreting to understanding how an AI algorithm makes a decision Further, you will learn the most complex ensemble models, explainability, and interpretability using frameworks such as Lime, SHAP, Skater, ELI5, etc. Moving forward, you will be introduced to model explainability for unstructured data, classification problems, and natural language processing–related tasks. Additionally, the book looks at counterfactual explanations for AI models. Practical Explainable AI Using Python shines the light on deep learning models, rule-based expert systems, and computer vision tasks using various XAI frameworks. What You'll Learn Review the different ways of making an AI model interpretable and explainable Examine the biasness and good ethical practices of AI models Quantify, visualize, and estimate reliability of AI models Design frameworks to unbox the black-box models Assess the fairness of AI models Understand the building blocks of trust in AI models Increase the level of AI adoption Who This Book Is For AI engineers, data scientists, and software developers involved in driving AI projects/ AI products.
Author |
: Vikrant Bhateja |
Publisher |
: Springer Nature |
Total Pages |
: 880 |
Release |
: 2020-04-07 |
ISBN-10 |
: 9789811509476 |
ISBN-13 |
: 9811509476 |
Rating |
: 4/5 (76 Downloads) |
Synopsis Embedded Systems and Artificial Intelligence by : Vikrant Bhateja
This book gathers selected research papers presented at the First International Conference on Embedded Systems and Artificial Intelligence (ESAI 2019), held at Sidi Mohamed Ben Abdellah University, Fez, Morocco, on 2–3 May 2019. Highlighting the latest innovations in Computer Science, Artificial Intelligence, Information Technologies, and Embedded Systems, the respective papers will encourage and inspire researchers, industry professionals, and policymakers to put these methods into practice.
Author |
: Joachim Diederich |
Publisher |
: Springer |
Total Pages |
: 267 |
Release |
: 2007-12-27 |
ISBN-10 |
: 9783540753902 |
ISBN-13 |
: 3540753907 |
Rating |
: 4/5 (02 Downloads) |
Synopsis Rule Extraction from Support Vector Machines by : Joachim Diederich
Support vector machines (SVMs) are one of the most active research areas in machine learning. SVMs have shown good performance in a number of applications, including text and image classification. However, the learning capability of SVMs comes at a cost – an inherent inability to explain in a comprehensible form, the process by which a learning result was reached. Hence, the situation is similar to neural networks, where the apparent lack of an explanation capability has led to various approaches aiming at extracting symbolic rules from neural networks. For SVMs to gain a wider degree of acceptance in fields such as medical diagnosis and security sensitive areas, it is desirable to offer an explanation capability. User explanation is often a legal requirement, because it is necessary to explain how a decision was reached or why it was made. This book provides an overview of the field and introduces a number of different approaches to extracting rules from support vector machines developed by key researchers. In addition, successful applications are outlined and future research opportunities are discussed. The book is an important reference for researchers and graduate students, and since it provides an introduction to the topic, it will be important in the classroom as well. Because of the significance of both SVMs and user explanation, the book is of relevance to data mining practitioners and data analysts.
Author |
: Moolchand Sharma |
Publisher |
: CRC Press |
Total Pages |
: 0 |
Release |
: 2024-10-04 |
ISBN-10 |
: 1032139307 |
ISBN-13 |
: 9781032139302 |
Rating |
: 4/5 (07 Downloads) |
Synopsis Deep Learning in Gaming and Animations by : Moolchand Sharma
The text discusses the core concepts and principles of deep learning in gaming and animation with applications in a single volume. It will be a useful reference text for graduate students, and professionals in diverse areas such as electrical engineering, electronics and communication engineering, computer science, gaming and animation.
Author |
: Przemyslaw Biecek |
Publisher |
: CRC Press |
Total Pages |
: 312 |
Release |
: 2021-02-15 |
ISBN-10 |
: 9780429651373 |
ISBN-13 |
: 0429651376 |
Rating |
: 4/5 (73 Downloads) |
Synopsis Explanatory Model Analysis by : Przemyslaw Biecek
Explanatory Model Analysis Explore, Explain and Examine Predictive Models is a set of methods and tools designed to build better predictive models and to monitor their behaviour in a changing environment. Today, the true bottleneck in predictive modelling is neither the lack of data, nor the lack of computational power, nor inadequate algorithms, nor the lack of flexible models. It is the lack of tools for model exploration (extraction of relationships learned by the model), model explanation (understanding the key factors influencing model decisions) and model examination (identification of model weaknesses and evaluation of model's performance). This book presents a collection of model agnostic methods that may be used for any black-box model together with real-world applications to classification and regression problems.
Author |
: El Bachir Boukherouaa |
Publisher |
: International Monetary Fund |
Total Pages |
: 35 |
Release |
: 2021-10-22 |
ISBN-10 |
: 9781589063952 |
ISBN-13 |
: 1589063953 |
Rating |
: 4/5 (52 Downloads) |
Synopsis Powering the Digital Economy: Opportunities and Risks of Artificial Intelligence in Finance by : El Bachir Boukherouaa
This paper discusses the impact of the rapid adoption of artificial intelligence (AI) and machine learning (ML) in the financial sector. It highlights the benefits these technologies bring in terms of financial deepening and efficiency, while raising concerns about its potential in widening the digital divide between advanced and developing economies. The paper advances the discussion on the impact of this technology by distilling and categorizing the unique risks that it could pose to the integrity and stability of the financial system, policy challenges, and potential regulatory approaches. The evolving nature of this technology and its application in finance means that the full extent of its strengths and weaknesses is yet to be fully understood. Given the risk of unexpected pitfalls, countries will need to strengthen prudential oversight.