Empirical Inference
Download Empirical Inference full books in PDF, epub, and Kindle. Read online free Empirical Inference ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads.
Author |
: Bernhard Schölkopf |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 295 |
Release |
: 2013-12-11 |
ISBN-10 |
: 9783642411366 |
ISBN-13 |
: 3642411363 |
Rating |
: 4/5 (66 Downloads) |
Synopsis Empirical Inference by : Bernhard Schölkopf
This book honours the outstanding contributions of Vladimir Vapnik, a rare example of a scientist for whom the following statements hold true simultaneously: his work led to the inception of a new field of research, the theory of statistical learning and empirical inference; he has lived to see the field blossom; and he is still as active as ever. He started analyzing learning algorithms in the 1960s and he invented the first version of the generalized portrait algorithm. He later developed one of the most successful methods in machine learning, the support vector machine (SVM) – more than just an algorithm, this was a new approach to learning problems, pioneering the use of functional analysis and convex optimization in machine learning. Part I of this book contains three chapters describing and witnessing some of Vladimir Vapnik's contributions to science. In the first chapter, Léon Bottou discusses the seminal paper published in 1968 by Vapnik and Chervonenkis that lay the foundations of statistical learning theory, and the second chapter is an English-language translation of that original paper. In the third chapter, Alexey Chervonenkis presents a first-hand account of the early history of SVMs and valuable insights into the first steps in the development of the SVM in the framework of the generalised portrait method. The remaining chapters, by leading scientists in domains such as statistics, theoretical computer science, and mathematics, address substantial topics in the theory and practice of statistical learning theory, including SVMs and other kernel-based methods, boosting, PAC-Bayesian theory, online and transductive learning, loss functions, learnable function classes, notions of complexity for function classes, multitask learning, and hypothesis selection. These contributions include historical and context notes, short surveys, and comments on future research directions. This book will be of interest to researchers, engineers, and graduate students engaged with all aspects of statistical learning.
Author |
: Michael R. Kosorok |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 482 |
Release |
: 2007-12-29 |
ISBN-10 |
: 9780387749785 |
ISBN-13 |
: 0387749780 |
Rating |
: 4/5 (85 Downloads) |
Synopsis Introduction to Empirical Processes and Semiparametric Inference by : Michael R. Kosorok
Kosorok’s brilliant text provides a self-contained introduction to empirical processes and semiparametric inference. These powerful research techniques are surprisingly useful for developing methods of statistical inference for complex models and in understanding the properties of such methods. This is an authoritative text that covers all the bases, and also a friendly and gradual introduction to the area. The book can be used as research reference and textbook.
Author |
: Bradley Efron |
Publisher |
: Cambridge University Press |
Total Pages |
: |
Release |
: 2012-11-29 |
ISBN-10 |
: 9781139492133 |
ISBN-13 |
: 1139492136 |
Rating |
: 4/5 (33 Downloads) |
Synopsis Large-Scale Inference by : Bradley Efron
We live in a new age for statistical inference, where modern scientific technology such as microarrays and fMRI machines routinely produce thousands and sometimes millions of parallel data sets, each with its own estimation or testing problem. Doing thousands of problems at once is more than repeated application of classical methods. Taking an empirical Bayes approach, Bradley Efron, inventor of the bootstrap, shows how information accrues across problems in a way that combines Bayesian and frequentist ideas. Estimation, testing and prediction blend in this framework, producing opportunities for new methodologies of increased power. New difficulties also arise, easily leading to flawed inferences. This book takes a careful look at both the promise and pitfalls of large-scale statistical inference, with particular attention to false discovery rates, the most successful of the new statistical techniques. Emphasis is on the inferential ideas underlying technical developments, illustrated using a large number of real examples.
Author |
: Olivier Chapelle |
Publisher |
: MIT Press |
Total Pages |
: 525 |
Release |
: 2010-01-22 |
ISBN-10 |
: 9780262514125 |
ISBN-13 |
: 0262514125 |
Rating |
: 4/5 (25 Downloads) |
Synopsis Semi-Supervised Learning by : Olivier Chapelle
A comprehensive review of an area of machine learning that deals with the use of unlabeled data in classification problems: state-of-the-art algorithms, a taxonomy of the field, applications, benchmark experiments, and directions for future research. In the field of machine learning, semi-supervised learning (SSL) occupies the middle ground, between supervised learning (in which all training examples are labeled) and unsupervised learning (in which no label data are given). Interest in SSL has increased in recent years, particularly because of application domains in which unlabeled data are plentiful, such as images, text, and bioinformatics. This first comprehensive overview of SSL presents state-of-the-art algorithms, a taxonomy of the field, selected applications, benchmark experiments, and perspectives on ongoing and future research.Semi-Supervised Learning first presents the key assumptions and ideas underlying the field: smoothness, cluster or low-density separation, manifold structure, and transduction. The core of the book is the presentation of SSL methods, organized according to algorithmic strategies. After an examination of generative models, the book describes algorithms that implement the low-density separation assumption, graph-based methods, and algorithms that perform two-step learning. The book then discusses SSL applications and offers guidelines for SSL practitioners by analyzing the results of extensive benchmark experiments. Finally, the book looks at interesting directions for SSL research. The book closes with a discussion of the relationship between semi-supervised learning and transduction.
Author |
: Aris Spanos |
Publisher |
: Cambridge University Press |
Total Pages |
: 787 |
Release |
: 2019-09-19 |
ISBN-10 |
: 9781107185142 |
ISBN-13 |
: 1107185149 |
Rating |
: 4/5 (42 Downloads) |
Synopsis Probability Theory and Statistical Inference by : Aris Spanos
This empirical research methods course enables informed implementation of statistical procedures, giving rise to trustworthy evidence.
Author |
: S.E. Ahmed |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 260 |
Release |
: 2001 |
ISBN-10 |
: 0387950184 |
ISBN-13 |
: 9780387950181 |
Rating |
: 4/5 (84 Downloads) |
Synopsis Empirical Bayes and Likelihood Inference by : S.E. Ahmed
Bayesian and such approaches to inference have a number of points of close contact, especially from an asymptotic point of view. Both emphasize the construction of interval estimates of unknown parameters. In this volume, researchers present recent work on several aspects of Bayesian, likelihood and empirical Bayes methods, presented at a workshop held in Montreal, Canada. The goal of the workshop was to explore the linkages among the methods, and to suggest new directions for research in the theory of inference.
Author |
: V. Vapnik |
Publisher |
: Springer |
Total Pages |
: 0 |
Release |
: 2010-11-19 |
ISBN-10 |
: 1441921583 |
ISBN-13 |
: 9781441921581 |
Rating |
: 4/5 (83 Downloads) |
Synopsis Estimation of Dependences Based on Empirical Data by : V. Vapnik
Twenty-?ve years have passed since the publication of the Russian version of the book Estimation of Dependencies Based on Empirical Data (EDBED for short). Twen- ?ve years is a long period of time. During these years many things have happened. Looking back, one can see how rapidly life and technology have changed, and how slow and dif?cult it is to change the theoretical foundation of the technology and its philosophy. I pursued two goals writing this Afterword: to update the technical results presented in EDBED (the easy goal) and to describe a general picture of how the new ideas developed over these years (a much more dif?cult goal). The picture which I would like to present is a very personal (and therefore very biased) account of the development of one particular branch of science, Empirical - ference Science. Such accounts usually are not included in the content of technical publications. I have followed this rule in all of my previous books. But this time I would like to violate it for the following reasons. First of all, for me EDBED is the important milestone in the development of empirical inference theory and I would like to explain why. S- ond, during these years, there were a lot of discussions between supporters of the new 1 paradigm (now it is called the VC theory ) and the old one (classical statistics).
Author |
: Alan Karr |
Publisher |
: Routledge |
Total Pages |
: 524 |
Release |
: 2017-09-06 |
ISBN-10 |
: 9781351423823 |
ISBN-13 |
: 1351423827 |
Rating |
: 4/5 (23 Downloads) |
Synopsis Point Processes and Their Statistical Inference by : Alan Karr
First Published in 2017. Routledge is an imprint of Taylor & Francis, an Informa company.
Author |
: Art B. Owen |
Publisher |
: CRC Press |
Total Pages |
: 322 |
Release |
: 2001-05-18 |
ISBN-10 |
: 9781420036152 |
ISBN-13 |
: 1420036157 |
Rating |
: 4/5 (52 Downloads) |
Synopsis Empirical Likelihood by : Art B. Owen
Empirical likelihood provides inferences whose validity does not depend on specifying a parametric model for the data. Because it uses a likelihood, the method has certain inherent advantages over resampling methods: it uses the data to determine the shape of the confidence regions, and it makes it easy to combined data from multiple sources. It al
Author |
: Bradley Efron |
Publisher |
: Cambridge University Press |
Total Pages |
: 496 |
Release |
: 2016-07-21 |
ISBN-10 |
: 9781108107952 |
ISBN-13 |
: 1108107958 |
Rating |
: 4/5 (52 Downloads) |
Synopsis Computer Age Statistical Inference by : Bradley Efron
The twenty-first century has seen a breathtaking expansion of statistical methodology, both in scope and in influence. 'Big data', 'data science', and 'machine learning' have become familiar terms in the news, as statistical methods are brought to bear upon the enormous data sets of modern science and commerce. How did we get here? And where are we going? This book takes us on an exhilarating journey through the revolution in data analysis following the introduction of electronic computation in the 1950s. Beginning with classical inferential theories - Bayesian, frequentist, Fisherian - individual chapters take up a series of influential topics: survival analysis, logistic regression, empirical Bayes, the jackknife and bootstrap, random forests, neural networks, Markov chain Monte Carlo, inference after model selection, and dozens more. The distinctly modern approach integrates methodology and algorithms with statistical inference. The book ends with speculation on the future direction of statistics and data science.