Elegant Scipy
Download Elegant Scipy full books in PDF, epub, and Kindle. Read online free Elegant Scipy ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads.
Author |
: Juan Nunez-Iglesias |
Publisher |
: "O'Reilly Media, Inc." |
Total Pages |
: 285 |
Release |
: 2017-08-11 |
ISBN-10 |
: 9781491922941 |
ISBN-13 |
: 149192294X |
Rating |
: 4/5 (41 Downloads) |
Synopsis Elegant SciPy by : Juan Nunez-Iglesias
Welcome to Scientific Python and its community. If you’re a scientist who programs with Python, this practical guide not only teaches you the fundamental parts of SciPy and libraries related to it, but also gives you a taste for beautiful, easy-to-read code that you can use in practice. You’ll learn how to write elegant code that’s clear, concise, and efficient at executing the task at hand. Throughout the book, you’ll work with examples from the wider scientific Python ecosystem, using code that illustrates principles outlined in the book. Using actual scientific data, you’ll work on real-world problems with SciPy, NumPy, Pandas, scikit-image, and other Python libraries. Explore the NumPy array, the data structure that underlies numerical scientific computation Use quantile normalization to ensure that measurements fit a specific distribution Represent separate regions in an image with a Region Adjacency Graph Convert temporal or spatial data into frequency domain data with the Fast Fourier Transform Solve sparse matrix problems, including image segmentations, with SciPy’s sparse module Perform linear algebra by using SciPy packages Explore image alignment (registration) with SciPy’s optimize module Process large datasets with Python data streaming primitives and the Toolz library
Author |
: Juan Nunez-Iglesias |
Publisher |
: "O'Reilly Media, Inc." |
Total Pages |
: 277 |
Release |
: 2017-08-11 |
ISBN-10 |
: 9781491922958 |
ISBN-13 |
: 1491922958 |
Rating |
: 4/5 (58 Downloads) |
Synopsis Elegant SciPy by : Juan Nunez-Iglesias
Welcome to Scientific Python and its community. If you’re a scientist who programs with Python, this practical guide not only teaches you the fundamental parts of SciPy and libraries related to it, but also gives you a taste for beautiful, easy-to-read code that you can use in practice. You’ll learn how to write elegant code that’s clear, concise, and efficient at executing the task at hand. Throughout the book, you’ll work with examples from the wider scientific Python ecosystem, using code that illustrates principles outlined in the book. Using actual scientific data, you’ll work on real-world problems with SciPy, NumPy, Pandas, scikit-image, and other Python libraries. Explore the NumPy array, the data structure that underlies numerical scientific computation Use quantile normalization to ensure that measurements fit a specific distribution Represent separate regions in an image with a Region Adjacency Graph Convert temporal or spatial data into frequency domain data with the Fast Fourier Transform Solve sparse matrix problems, including image segmentations, with SciPy’s sparse module Perform linear algebra by using SciPy packages Explore image alignment (registration) with SciPy’s optimize module Process large datasets with Python data streaming primitives and the Toolz library
Author |
: Eli Bressert |
Publisher |
: "O'Reilly Media, Inc." |
Total Pages |
: 68 |
Release |
: 2012 |
ISBN-10 |
: 9781449305468 |
ISBN-13 |
: 1449305466 |
Rating |
: 4/5 (68 Downloads) |
Synopsis SciPy and NumPy by : Eli Bressert
"Optimizing and boosting your Python programming"--Cover.
Author |
: Travis Oliphant |
Publisher |
: CreateSpace |
Total Pages |
: 364 |
Release |
: 2015-09-15 |
ISBN-10 |
: 151730007X |
ISBN-13 |
: 9781517300074 |
Rating |
: 4/5 (7X Downloads) |
Synopsis Guide to NumPy by : Travis Oliphant
This is the second edition of Travis Oliphant's A Guide to NumPy originally published electronically in 2006. It is designed to be a reference that can be used by practitioners who are familiar with Python but want to learn more about NumPy and related tools. In this updated edition, new perspectives are shared as well as descriptions of new distributed processing tools in the ecosystem, and how Numba can be used to compile code using NumPy arrays. Travis Oliphant is the co-founder and CEO of Continuum Analytics. Continuum Analytics develops Anaconda, the leading modern open source analytics platform powered by Python. Travis, who is a passionate advocate of open source technology, has a Ph.D. from Mayo Clinic and B.S. and M.S. degrees in Mathematics and Electrical Engineering from Brigham Young University. Since 1997, he has worked extensively with Python for computational and data science. He was the primary creator of the NumPy package and founding contributor to the SciPy package. He was also a co-founder and past board member of NumFOCUS, a non-profit for reproducible and accessible science that supports the PyData stack. He also served on the board of the Python Software Foundation.
Author |
: Greg Wilson |
Publisher |
: "O'Reilly Media, Inc." |
Total Pages |
: 621 |
Release |
: 2007-06-26 |
ISBN-10 |
: 9780596554675 |
ISBN-13 |
: 0596554672 |
Rating |
: 4/5 (75 Downloads) |
Synopsis Beautiful Code by : Greg Wilson
How do the experts solve difficult problems in software development? In this unique and insightful book, leading computer scientists offer case studies that reveal how they found unusual, carefully designed solutions to high-profile projects. You will be able to look over the shoulder of major coding and design experts to see problems through their eyes. This is not simply another design patterns book, or another software engineering treatise on the right and wrong way to do things. The authors think aloud as they work through their project's architecture, the tradeoffs made in its construction, and when it was important to break rules. This book contains 33 chapters contributed by Brian Kernighan, KarlFogel, Jon Bentley, Tim Bray, Elliotte Rusty Harold, Michael Feathers,Alberto Savoia, Charles Petzold, Douglas Crockford, Henry S. Warren,Jr., Ashish Gulhati, Lincoln Stein, Jim Kent, Jack Dongarra and PiotrLuszczek, Adam Kolawa, Greg Kroah-Hartman, Diomidis Spinellis, AndrewKuchling, Travis E. Oliphant, Ronald Mak, Rogerio Atem de Carvalho andRafael Monnerat, Bryan Cantrill, Jeff Dean and Sanjay Ghemawat, SimonPeyton Jones, Kent Dybvig, William Otte and Douglas C. Schmidt, AndrewPatzer, Andreas Zeller, Yukihiro Matsumoto, Arun Mehta, TV Raman,Laura Wingerd and Christopher Seiwald, and Brian Hayes. Beautiful Code is an opportunity for master coders to tell their story. All author royalties will be donated to Amnesty International.
Author |
: John M. Stewart |
Publisher |
: Cambridge University Press |
Total Pages |
: 272 |
Release |
: 2017-07-20 |
ISBN-10 |
: 9781316641231 |
ISBN-13 |
: 1316641236 |
Rating |
: 4/5 (31 Downloads) |
Synopsis Python for Scientists by : John M. Stewart
Scientific Python is taught from scratch in this book via copious, downloadable, useful and adaptable code snippets. Everything the working scientist needs to know is covered, quickly providing researchers and research students with the skills to start using Python effectively.
Author |
: Robert Johansson |
Publisher |
: Springer Nature |
Total Pages |
: 501 |
Release |
: |
ISBN-10 |
: 9798868804137 |
ISBN-13 |
: |
Rating |
: 4/5 (37 Downloads) |
Synopsis Numerical Python by : Robert Johansson
Author |
: Wes McKinney |
Publisher |
: "O'Reilly Media, Inc." |
Total Pages |
: 553 |
Release |
: 2017-09-25 |
ISBN-10 |
: 9781491957615 |
ISBN-13 |
: 1491957611 |
Rating |
: 4/5 (15 Downloads) |
Synopsis Python for Data Analysis by : Wes McKinney
Get complete instructions for manipulating, processing, cleaning, and crunching datasets in Python. Updated for Python 3.6, the second edition of this hands-on guide is packed with practical case studies that show you how to solve a broad set of data analysis problems effectively. You’ll learn the latest versions of pandas, NumPy, IPython, and Jupyter in the process. Written by Wes McKinney, the creator of the Python pandas project, this book is a practical, modern introduction to data science tools in Python. It’s ideal for analysts new to Python and for Python programmers new to data science and scientific computing. Data files and related material are available on GitHub. Use the IPython shell and Jupyter notebook for exploratory computing Learn basic and advanced features in NumPy (Numerical Python) Get started with data analysis tools in the pandas library Use flexible tools to load, clean, transform, merge, and reshape data Create informative visualizations with matplotlib Apply the pandas groupby facility to slice, dice, and summarize datasets Analyze and manipulate regular and irregular time series data Learn how to solve real-world data analysis problems with thorough, detailed examples
Author |
: Sunil Kapil |
Publisher |
: Apress |
Total Pages |
: 274 |
Release |
: 2019-05-21 |
ISBN-10 |
: 9781484248782 |
ISBN-13 |
: 1484248783 |
Rating |
: 4/5 (82 Downloads) |
Synopsis Clean Python by : Sunil Kapil
Discover the right way to code in Python. This book provides the tips and techniques you need to produce cleaner, error-free, and eloquent Python projects. Your journey to better code starts with understanding the importance of formatting and documenting your code for maximum readability, utilizing built-in data structures and Python dictionary for improved maintainability, and working with modules and meta-classes to effectively organize your code. You will then dive deep into the new features of the Python language and learn how to effectively utilize them. Next, you will decode key concepts such as asynchronous programming, Python data types, type hinting, and path handling. Learn tips to debug and conduct unit and integration tests in your Python code to ensure your code is ready for production. The final leg of your learning journey equips you with essential tools for version management, managing live code, and intelligent code completion. After reading and using this book, you will be proficient in writing clean Python code and successfully apply these principles to your own Python projects. What You’ll Learn Use the right expressions and statements in your Python code Create and assess Python Dictionary Work with advanced data structures in Python Write better modules, classes, functions, and metaclassesStart writing asynchronous Python immediatelyDiscover new features in Python Who This Book Is For Readers with a basic Python programming knowledge who want to improve their Python programming skills by learning right way to code in Python.
Author |
: Hans Petter Langtangen |
Publisher |
: Springer |
Total Pages |
: 942 |
Release |
: 2016-07-28 |
ISBN-10 |
: 9783662498873 |
ISBN-13 |
: 3662498871 |
Rating |
: 4/5 (73 Downloads) |
Synopsis A Primer on Scientific Programming with Python by : Hans Petter Langtangen
The book serves as a first introduction to computer programming of scientific applications, using the high-level Python language. The exposition is example and problem-oriented, where the applications are taken from mathematics, numerical calculus, statistics, physics, biology and finance. The book teaches "Matlab-style" and procedural programming as well as object-oriented programming. High school mathematics is a required background and it is advantageous to study classical and numerical one-variable calculus in parallel with reading this book. Besides learning how to program computers, the reader will also learn how to solve mathematical problems, arising in various branches of science and engineering, with the aid of numerical methods and programming. By blending programming, mathematics and scientific applications, the book lays a solid foundation for practicing computational science. From the reviews: Langtangen ... does an excellent job of introducing programming as a set of skills in problem solving. He guides the reader into thinking properly about producing program logic and data structures for modeling real-world problems using objects and functions and embracing the object-oriented paradigm. ... Summing Up: Highly recommended. F. H. Wild III, Choice, Vol. 47 (8), April 2010 Those of us who have learned scientific programming in Python ‘on the streets’ could be a little jealous of students who have the opportunity to take a course out of Langtangen’s Primer.” John D. Cook, The Mathematical Association of America, September 2011 This book goes through Python in particular, and programming in general, via tasks that scientists will likely perform. It contains valuable information for students new to scientific computing and would be the perfect bridge between an introduction to programming and an advanced course on numerical methods or computational science. Alex Small, IEEE, CiSE Vol. 14 (2), March /April 2012 “This fourth edition is a wonderful, inclusive textbook that covers pretty much everything one needs to know to go from zero to fairly sophisticated scientific programming in Python...” Joan Horvath, Computing Reviews, March 2015