Elegant SciPy

Elegant SciPy
Author :
Publisher : "O'Reilly Media, Inc."
Total Pages : 285
Release :
ISBN-10 : 9781491922941
ISBN-13 : 149192294X
Rating : 4/5 (41 Downloads)

Synopsis Elegant SciPy by : Juan Nunez-Iglesias

Welcome to Scientific Python and its community. If you’re a scientist who programs with Python, this practical guide not only teaches you the fundamental parts of SciPy and libraries related to it, but also gives you a taste for beautiful, easy-to-read code that you can use in practice. You’ll learn how to write elegant code that’s clear, concise, and efficient at executing the task at hand. Throughout the book, you’ll work with examples from the wider scientific Python ecosystem, using code that illustrates principles outlined in the book. Using actual scientific data, you’ll work on real-world problems with SciPy, NumPy, Pandas, scikit-image, and other Python libraries. Explore the NumPy array, the data structure that underlies numerical scientific computation Use quantile normalization to ensure that measurements fit a specific distribution Represent separate regions in an image with a Region Adjacency Graph Convert temporal or spatial data into frequency domain data with the Fast Fourier Transform Solve sparse matrix problems, including image segmentations, with SciPy’s sparse module Perform linear algebra by using SciPy packages Explore image alignment (registration) with SciPy’s optimize module Process large datasets with Python data streaming primitives and the Toolz library

Elegant SciPy

Elegant SciPy
Author :
Publisher : "O'Reilly Media, Inc."
Total Pages : 277
Release :
ISBN-10 : 9781491922958
ISBN-13 : 1491922958
Rating : 4/5 (58 Downloads)

Synopsis Elegant SciPy by : Juan Nunez-Iglesias

Welcome to Scientific Python and its community. If you’re a scientist who programs with Python, this practical guide not only teaches you the fundamental parts of SciPy and libraries related to it, but also gives you a taste for beautiful, easy-to-read code that you can use in practice. You’ll learn how to write elegant code that’s clear, concise, and efficient at executing the task at hand. Throughout the book, you’ll work with examples from the wider scientific Python ecosystem, using code that illustrates principles outlined in the book. Using actual scientific data, you’ll work on real-world problems with SciPy, NumPy, Pandas, scikit-image, and other Python libraries. Explore the NumPy array, the data structure that underlies numerical scientific computation Use quantile normalization to ensure that measurements fit a specific distribution Represent separate regions in an image with a Region Adjacency Graph Convert temporal or spatial data into frequency domain data with the Fast Fourier Transform Solve sparse matrix problems, including image segmentations, with SciPy’s sparse module Perform linear algebra by using SciPy packages Explore image alignment (registration) with SciPy’s optimize module Process large datasets with Python data streaming primitives and the Toolz library

SciPy and NumPy

SciPy and NumPy
Author :
Publisher : "O'Reilly Media, Inc."
Total Pages : 68
Release :
ISBN-10 : 9781449305468
ISBN-13 : 1449305466
Rating : 4/5 (68 Downloads)

Synopsis SciPy and NumPy by : Eli Bressert

"Optimizing and boosting your Python programming"--Cover.

Guide to NumPy

Guide to NumPy
Author :
Publisher : CreateSpace
Total Pages : 364
Release :
ISBN-10 : 151730007X
ISBN-13 : 9781517300074
Rating : 4/5 (7X Downloads)

Synopsis Guide to NumPy by : Travis Oliphant

This is the second edition of Travis Oliphant's A Guide to NumPy originally published electronically in 2006. It is designed to be a reference that can be used by practitioners who are familiar with Python but want to learn more about NumPy and related tools. In this updated edition, new perspectives are shared as well as descriptions of new distributed processing tools in the ecosystem, and how Numba can be used to compile code using NumPy arrays. Travis Oliphant is the co-founder and CEO of Continuum Analytics. Continuum Analytics develops Anaconda, the leading modern open source analytics platform powered by Python. Travis, who is a passionate advocate of open source technology, has a Ph.D. from Mayo Clinic and B.S. and M.S. degrees in Mathematics and Electrical Engineering from Brigham Young University. Since 1997, he has worked extensively with Python for computational and data science. He was the primary creator of the NumPy package and founding contributor to the SciPy package. He was also a co-founder and past board member of NumFOCUS, a non-profit for reproducible and accessible science that supports the PyData stack. He also served on the board of the Python Software Foundation.

Beautiful Code

Beautiful Code
Author :
Publisher : "O'Reilly Media, Inc."
Total Pages : 621
Release :
ISBN-10 : 9780596554675
ISBN-13 : 0596554672
Rating : 4/5 (75 Downloads)

Synopsis Beautiful Code by : Greg Wilson

How do the experts solve difficult problems in software development? In this unique and insightful book, leading computer scientists offer case studies that reveal how they found unusual, carefully designed solutions to high-profile projects. You will be able to look over the shoulder of major coding and design experts to see problems through their eyes. This is not simply another design patterns book, or another software engineering treatise on the right and wrong way to do things. The authors think aloud as they work through their project's architecture, the tradeoffs made in its construction, and when it was important to break rules. This book contains 33 chapters contributed by Brian Kernighan, KarlFogel, Jon Bentley, Tim Bray, Elliotte Rusty Harold, Michael Feathers,Alberto Savoia, Charles Petzold, Douglas Crockford, Henry S. Warren,Jr., Ashish Gulhati, Lincoln Stein, Jim Kent, Jack Dongarra and PiotrLuszczek, Adam Kolawa, Greg Kroah-Hartman, Diomidis Spinellis, AndrewKuchling, Travis E. Oliphant, Ronald Mak, Rogerio Atem de Carvalho andRafael Monnerat, Bryan Cantrill, Jeff Dean and Sanjay Ghemawat, SimonPeyton Jones, Kent Dybvig, William Otte and Douglas C. Schmidt, AndrewPatzer, Andreas Zeller, Yukihiro Matsumoto, Arun Mehta, TV Raman,Laura Wingerd and Christopher Seiwald, and Brian Hayes. Beautiful Code is an opportunity for master coders to tell their story. All author royalties will be donated to Amnesty International.

Python for Scientists

Python for Scientists
Author :
Publisher : Cambridge University Press
Total Pages : 272
Release :
ISBN-10 : 9781316641231
ISBN-13 : 1316641236
Rating : 4/5 (31 Downloads)

Synopsis Python for Scientists by : John M. Stewart

Scientific Python is taught from scratch in this book via copious, downloadable, useful and adaptable code snippets. Everything the working scientist needs to know is covered, quickly providing researchers and research students with the skills to start using Python effectively.

Numerical Python

Numerical Python
Author :
Publisher : Springer Nature
Total Pages : 501
Release :
ISBN-10 : 9798868804137
ISBN-13 :
Rating : 4/5 (37 Downloads)

Synopsis Numerical Python by : Robert Johansson

Python for Data Analysis

Python for Data Analysis
Author :
Publisher : "O'Reilly Media, Inc."
Total Pages : 553
Release :
ISBN-10 : 9781491957615
ISBN-13 : 1491957611
Rating : 4/5 (15 Downloads)

Synopsis Python for Data Analysis by : Wes McKinney

Get complete instructions for manipulating, processing, cleaning, and crunching datasets in Python. Updated for Python 3.6, the second edition of this hands-on guide is packed with practical case studies that show you how to solve a broad set of data analysis problems effectively. You’ll learn the latest versions of pandas, NumPy, IPython, and Jupyter in the process. Written by Wes McKinney, the creator of the Python pandas project, this book is a practical, modern introduction to data science tools in Python. It’s ideal for analysts new to Python and for Python programmers new to data science and scientific computing. Data files and related material are available on GitHub. Use the IPython shell and Jupyter notebook for exploratory computing Learn basic and advanced features in NumPy (Numerical Python) Get started with data analysis tools in the pandas library Use flexible tools to load, clean, transform, merge, and reshape data Create informative visualizations with matplotlib Apply the pandas groupby facility to slice, dice, and summarize datasets Analyze and manipulate regular and irregular time series data Learn how to solve real-world data analysis problems with thorough, detailed examples

Clean Python

Clean Python
Author :
Publisher : Apress
Total Pages : 274
Release :
ISBN-10 : 9781484248782
ISBN-13 : 1484248783
Rating : 4/5 (82 Downloads)

Synopsis Clean Python by : Sunil Kapil

Discover the right way to code in Python. This book provides the tips and techniques you need to produce cleaner, error-free, and eloquent Python projects. Your journey to better code starts with understanding the importance of formatting and documenting your code for maximum readability, utilizing built-in data structures and Python dictionary for improved maintainability, and working with modules and meta-classes to effectively organize your code. You will then dive deep into the new features of the Python language and learn how to effectively utilize them. Next, you will decode key concepts such as asynchronous programming, Python data types, type hinting, and path handling. Learn tips to debug and conduct unit and integration tests in your Python code to ensure your code is ready for production. The final leg of your learning journey equips you with essential tools for version management, managing live code, and intelligent code completion. After reading and using this book, you will be proficient in writing clean Python code and successfully apply these principles to your own Python projects. What You’ll Learn Use the right expressions and statements in your Python code Create and assess Python Dictionary Work with advanced data structures in Python Write better modules, classes, functions, and metaclassesStart writing asynchronous Python immediatelyDiscover new features in Python Who This Book Is For Readers with a basic Python programming knowledge who want to improve their Python programming skills by learning right way to code in Python.

A Primer on Scientific Programming with Python

A Primer on Scientific Programming with Python
Author :
Publisher : Springer
Total Pages : 942
Release :
ISBN-10 : 9783662498873
ISBN-13 : 3662498871
Rating : 4/5 (73 Downloads)

Synopsis A Primer on Scientific Programming with Python by : Hans Petter Langtangen

The book serves as a first introduction to computer programming of scientific applications, using the high-level Python language. The exposition is example and problem-oriented, where the applications are taken from mathematics, numerical calculus, statistics, physics, biology and finance. The book teaches "Matlab-style" and procedural programming as well as object-oriented programming. High school mathematics is a required background and it is advantageous to study classical and numerical one-variable calculus in parallel with reading this book. Besides learning how to program computers, the reader will also learn how to solve mathematical problems, arising in various branches of science and engineering, with the aid of numerical methods and programming. By blending programming, mathematics and scientific applications, the book lays a solid foundation for practicing computational science. From the reviews: Langtangen ... does an excellent job of introducing programming as a set of skills in problem solving. He guides the reader into thinking properly about producing program logic and data structures for modeling real-world problems using objects and functions and embracing the object-oriented paradigm. ... Summing Up: Highly recommended. F. H. Wild III, Choice, Vol. 47 (8), April 2010 Those of us who have learned scientific programming in Python ‘on the streets’ could be a little jealous of students who have the opportunity to take a course out of Langtangen’s Primer.” John D. Cook, The Mathematical Association of America, September 2011 This book goes through Python in particular, and programming in general, via tasks that scientists will likely perform. It contains valuable information for students new to scientific computing and would be the perfect bridge between an introduction to programming and an advanced course on numerical methods or computational science. Alex Small, IEEE, CiSE Vol. 14 (2), March /April 2012 “This fourth edition is a wonderful, inclusive textbook that covers pretty much everything one needs to know to go from zero to fairly sophisticated scientific programming in Python...” Joan Horvath, Computing Reviews, March 2015