Discrete Oscillator Design

Discrete Oscillator Design
Author :
Publisher : Artech House
Total Pages : 466
Release :
ISBN-10 : 9781608070480
ISBN-13 : 1608070484
Rating : 4/5 (80 Downloads)

Synopsis Discrete Oscillator Design by : Randall W. Rhea

Oscillators are an essential part of all spread spectrum, RF, and wireless systems, and todayOCOs engineers in the field need to have a firm grasp on how they are designed. Presenting an easy-to-understand, unified view of the subject, this authoritative resource covers the practical design of high-frequency oscillators with lumped, distributed, dielectric and piezoelectric resonators. Including numerous examples, the book details important linear, nonlinear harmonic balance, transient and noise analysis techniques. Moreover, the book shows you how to apply these techniques to a wide range of oscillators. You gain the knowledge needed to create unique designs that elegantly match your specification needs. Over 360 illustrations and more than 330 equations support key topics throughout the book.

RF and Microwave Transistor Oscillator Design

RF and Microwave Transistor Oscillator Design
Author :
Publisher : John Wiley & Sons
Total Pages : 458
Release :
ISBN-10 : 0470512083
ISBN-13 : 9780470512081
Rating : 4/5 (83 Downloads)

Synopsis RF and Microwave Transistor Oscillator Design by : Andrei Grebennikov

The increase of consumer electronics and communications applications using Radio Frequency (RF) and microwave circuits has implications for oscillator design. Applications working at higher frequencies and using novel technologies have led to a demand for more robust circuits with higher performance and functionality, but decreased costs, size and power consumption. As a result, there is also a need for more efficient oscillators. This book presents up to date information on all aspects of oscillator design, enabling a selection of the best oscillator topologies with optimized noise reduction and electrical performance. RF and Microwave Transistor Oscillator Design covers: analyses of non-linear circuit design methods including spectral-domain analysis, time-domain analysis and the quasilinear method; information on noise in oscillators including chapters on varactor and oscillator frequency tuning, CMOS voltage-controlled oscillators and wideband voltage-controlled oscillators; information on the stability of oscillations, with discussions on the stability of multi-resonant circuits and the phase plane method; optimized design and circuit techniques, beginning with the empirical and analytic design approaches, moving on to the high-efficiency design technique; general operation and design principles of oscillators, including a section on the historical aspects of oscillator configurations. A valuable reference for practising RF and Microwave designers and engineers, RF and Microwave Transistor Oscillator Design is also useful for lecturers, advanced students and research and design (R&D) personnel.

Oscillator Design/Compu Si

Oscillator Design/Compu Si
Author :
Publisher : McGraw Hill Professional
Total Pages : 324
Release :
ISBN-10 : 0071355804
ISBN-13 : 9780071355803
Rating : 4/5 (04 Downloads)

Synopsis Oscillator Design/Compu Si by : Randall W. Rhea

With the rapid growth in telecommunications markets, this unique guide is thoroughly updated to reflect state-of-the-art knowledge in oscillator design. Rhea demystifies the design of L-C, transmission line, crystal quartz, and SAW oscillators. Numerous examples and case studies offer real-life perspectives, while cutting-edge computer simulation materials enhance the book's usefulness. (CAD techniques are integrated into processes from start to finish.) And the approaches presented can be applied to any active device and any resonator technology, ensuring the book's readership for years, to come.

High-Frequency Oscillator Design for Integrated Transceivers

High-Frequency Oscillator Design for Integrated Transceivers
Author :
Publisher : Springer Science & Business Media
Total Pages : 330
Release :
ISBN-10 : 9780306487163
ISBN-13 : 0306487160
Rating : 4/5 (63 Downloads)

Synopsis High-Frequency Oscillator Design for Integrated Transceivers by : J. van der Tang

This text covers the analysis and design of all high-frequency oscillators required to realize integrated transceivers for wireless and wired applications. Starting with an in-depth review of basic oscillator theory, the authors provide a detailed analysis of many oscillator types and circuit topologies.

Foundations of Oscillator Circuit Design

Foundations of Oscillator Circuit Design
Author :
Publisher : Artech House Publishers
Total Pages : 448
Release :
ISBN-10 : UOM:39015067648801
ISBN-13 :
Rating : 4/5 (01 Downloads)

Synopsis Foundations of Oscillator Circuit Design by : Guillermo Gonzalez

Oscillators are an important component in today's RF and microwave systems, and practitioners in the field need to know how to design oscillators for stability and top performance. Offering engineers broader coverage than other oscillator design books on the market, this comprehensive resource considers the complete frequency range, from low-frequency audio oscillators to more complex oscillators found at the RF and microwave frequencies. Packed with over 1,200 equations, the book gives professionals a thorough understanding of the principles and practice of oscillator circuit design and emphasizes the use of time-saving CAD (computer aided design) simulation techniques. From the theory and characteristics of oscillators, to the design of a wide variety of oscillators (including tuned-circuit, crystal, negative-resistance, and relaxation oscillators), this unique book is a one-stop reference practitioners can turn to again and again when working on their challenging projects in this field.

RF and Microwave Oscillator Design

RF and Microwave Oscillator Design
Author :
Publisher : Artech House
Total Pages : 422
Release :
ISBN-10 : 1580537685
ISBN-13 : 9781580537681
Rating : 4/5 (85 Downloads)

Synopsis RF and Microwave Oscillator Design by : Micha Odyniec

This groundbreaking book is the first to present the state of the art in microwave oscillator design with an emphasis on new nonlinear methods. A compilation of pioneering work from experts in the field, it also provides rigorous theory and historical background. Invaluable for professionals at all levels of design expertise, this volume helps you to bridge the gap between design practice and new powerful design methods, learn all aspects of modern oscillator design and review practical designs and experimental results of fixed-frequency, high-Q, low-noise oscillators.

RF and Microwave Power Amplifier Design

RF and Microwave Power Amplifier Design
Author :
Publisher : McGraw Hill Professional
Total Pages : 433
Release :
ISBN-10 : 9780071782999
ISBN-13 : 0071782990
Rating : 4/5 (99 Downloads)

Synopsis RF and Microwave Power Amplifier Design by : Andrei Grebennikov

This is a rigorous tutorial on radio frequency and microwave power amplifier design, teaching the circuit design techniques that form the microelectronic backbones of modern wireless communications systems. Suitable for self-study, corporate training, or Senior/Graduate classroom use, the book combines analytical calculations and computer-aided design techniques to arm electronic engineers with every possible method to improve their designs and shorten their design time cycles.

Fundamentals of Electronics: Book 4

Fundamentals of Electronics: Book 4
Author :
Publisher : Morgan & Claypool Publishers
Total Pages : 268
Release :
ISBN-10 : 9781627055697
ISBN-13 : 162705569X
Rating : 4/5 (97 Downloads)

Synopsis Fundamentals of Electronics: Book 4 by : Thomas F. Schubert Jr.

This book, Oscillators and Advanced Electronics Topics, is the final book of a larger, four-book set, Fundamentals of Electronics. It consists of five chapters that further develop practical electronic applications based on the fundamental principles developed in the first three books. This book begins by extending the principles of electronic feedback circuits to linear oscillator circuits. The second chapter explores non-linear oscillation, waveform generation, and waveshaping. The third chapter focuses on providing clean, reliable power for electronic applications where voltage regulation and transient suppression are the focus. Fundamentals of communication circuitry form the basis for the fourth chapter with voltage-controlled oscillators, mixers, and phase-lock loops being the primary focus. The final chapter expands upon early discussions of logic gate operation (introduced in Book 1) to explore gate speed and advanced gate topologies. Fundamentals of Electronics has been designed primarily for use in upper division courses in electronics for electrical engineering students and for working professionals. Typically such courses span a full academic year plus an additional semester or quarter. As such, Oscillators and Advanced Electronics Topics and the three companion book of Fundamentals of Electronics form an appropriate body of material for such courses.

Fundamentals of Electronics

Fundamentals of Electronics
Author :
Publisher : Springer Nature
Total Pages : 252
Release :
ISBN-10 : 9783031798863
ISBN-13 : 3031798864
Rating : 4/5 (63 Downloads)

Synopsis Fundamentals of Electronics by : Thomas F. Schubert Jr.

This book, Oscillators and Advanced Electronics Topics, is the final book of a larger, four-book set, Fundamentals of Electronics. It consists of five chapters that further develop practical electronic applications based on the fundamental principles developed in the first three books. This book begins by extending the principles of electronic feedback circuits to linear oscillator circuits. The second chapter explores non-linear oscillation, waveform generation, and waveshaping. The third chapter focuses on providing clean, reliable power for electronic applications where voltage regulation and transient suppression are the focus. Fundamentals of communication circuitry form the basis for the fourth chapter with voltage-controlled oscillators, mixers, and phase-lock loops being the primary focus. The final chapter expands upon early discussions of logic gate operation (introduced in Book 1) to explore gate speed and advanced gate topologies. Fundamentals of Electronics has been designed primarily for use in upper division courses in electronics for electrical engineering students and for working professionals. Typically such courses span a full academic year plus an additional semester or quarter. As such, Oscillators and Advanced Electronics Topics and the three companion book of Fundamentals of Electronics form an appropriate body of material for such courses.

Applications of Nonlinear Dynamics

Applications of Nonlinear Dynamics
Author :
Publisher : Springer Science & Business Media
Total Pages : 464
Release :
ISBN-10 : 9783540856320
ISBN-13 : 3540856323
Rating : 4/5 (20 Downloads)

Synopsis Applications of Nonlinear Dynamics by : Visarath In

The ?eld of applied nonlinear dynamics has attracted scientists and engineers across many different disciplines to develop innovative ideas and methods to study c- plex behavior exhibited by relatively simple systems. Examples include: population dynamics, ?uidization processes, applied optics, stochastic resonance, ?ocking and ?ightformations,lasers,andmechanicalandelectricaloscillators. Acommontheme among these and many other examples is the underlying universal laws of nonl- ear science that govern the behavior, in space and time, of a given system. These laws are universal in the sense that they transcend the model-speci?c features of a system and so they can be readily applied to explain and predict the behavior of a wide ranging phenomena, natural and arti?cial ones. Thus the emphasis in the past decades has been in explaining nonlinear phenomena with signi?cantly less att- tion paid to exploiting the rich behavior of nonlinear systems to design and fabricate new devices that can operate more ef?ciently. Recently, there has been a series of meetings on topics such as Experimental Chaos, Neural Coding, and Stochastic Resonance, which have brought together many researchers in the ?eld of nonlinear dynamics to discuss, mainly, theoretical ideas that may have the potential for further implementation. In contrast, the goal of the 2007 ICAND (International Conference on Applied Nonlinear Dynamics) was focused more sharply on the implementation of theoretical ideas into actual - vices and systems.