Digital Fourier Analysis: Fundamentals

Digital Fourier Analysis: Fundamentals
Author :
Publisher : Springer
Total Pages : 210
Release :
ISBN-10 : 9781461492603
ISBN-13 : 1461492602
Rating : 4/5 (03 Downloads)

Synopsis Digital Fourier Analysis: Fundamentals by : Ken'iti Kido

This textbook is a thorough, accessible introduction to digital Fourier analysis for undergraduate students in the sciences. Beginning with the principles of sine/cosine decomposition, the reader walks through the principles of discrete Fourier analysis before reaching the cornerstone of signal processing: the Fast Fourier Transform. Saturated with clear, coherent illustrations, "Digital Fourier Analysis" includes practice problems and thorough Appendices for the advanced reader. As a special feature, the book includes interactive applets (available online) that mirror the illustrations. These user-friendly applets animate concepts interactively, allowing the user to experiment with the underlying mathematics. For example, a real sine signal can be treated as a sum of clockwise and counter-clockwise rotating vectors. The applet illustration included with the book animates the rotating vectors and the resulting sine signal. By changing parameters such as amplitude and frequency, the reader can test various cases and view the results until they fully understand the principle. Additionally, the applet source code in Visual Basic is provided online, allowing this book to be used for teaching simple programming techniques. A complete, intuitive guide to the basics, "Digital Fourier Analysis - Fundamentals" is an essential reference for undergraduate students in science and engineering.

Digital Fourier Analysis

Digital Fourier Analysis
Author :
Publisher : Springer
Total Pages : 381
Release :
ISBN-10 : 1493915215
ISBN-13 : 9781493915217
Rating : 4/5 (15 Downloads)

Synopsis Digital Fourier Analysis by : Ken'iti Kido

This set collects the fundamental and advanced techniques outlined in both volumes. Beginning with the principles of sine/cosine decomposition, the reader walks through the principles of discrete Fourier analysis before reaching the cornerstone of signal processing: the Fast Fourier Transform. The second volume covers advanced topics including the Hilbert transform, cepstrum analysis, and the two-dimensional Fourier transform. Saturated with clear, coherent illustrations, Digital Fourier Analysis includes practice problems and thorough Appendices for the advanced reader. As a special feature, interactive applets (available online) that mirror the illustrations are included. These user-friendly applets animate concepts interactively, allowing the user to experiment with the underlying mathematics. For example, a real sine signal can be treated as a sum of clockwise and counter-clockwise rotating vectors. The applet illustration included with the book animates the rotating vectors and the resulting sine signal. By changing parameters such as amplitude and frequency, the reader can test various cases and view the results until they fully understand the principle. Additionally, the applet source code in Visual Basic is provided online, allowing this book to be used for teaching simple programming techniques. A complete, intuitive guide, Digital Fourier Analysis is an essential reference for undergraduate and graduate students in science and engineering.

Digital Fourier Analysis: Advanced Techniques

Digital Fourier Analysis: Advanced Techniques
Author :
Publisher : Springer
Total Pages : 185
Release :
ISBN-10 : 9781493911271
ISBN-13 : 1493911279
Rating : 4/5 (71 Downloads)

Synopsis Digital Fourier Analysis: Advanced Techniques by : Ken'iti Kido

This textbook is a thorough, accessible introduction to advanced digital Fourier analysis for advanced students. Assuming knowledge of the Fast Fourier Transform, this book covers advanced topics including the Hilbert transform, cepstrum analysis and the two-dimensional Fourier transform. Saturated with clear, coherent illustrations, "Digital Fourier Analysis: Volume 2" includes practice problems and thorough Appendices. As a central feature, the book includes interactive applets (available online) that mirror the illustrations. These user-friendly applets animate concepts interactively, allowing the user to experiment with the underlying mathematics. The applet source code in Visual Basic is provided online, enabling advanced students to tweak and change the programs for more sophisticated results. A complete, intuitive guide, "Digital Fourier Analysis, Volume 2" is an essential reference for students in science and engineering.

Discrete and Continuous Fourier Transforms

Discrete and Continuous Fourier Transforms
Author :
Publisher : CRC Press
Total Pages : 443
Release :
ISBN-10 : 9781000687576
ISBN-13 : 1000687570
Rating : 4/5 (76 Downloads)

Synopsis Discrete and Continuous Fourier Transforms by : Eleanor Chu

Long employed in electrical engineering, the discrete Fourier transform (DFT) is now applied in a range of fields through the use of digital computers and fast Fourier transform (FFT) algorithms. But to correctly interpret DFT results, it is essential to understand the core and tools of Fourier analysis. Discrete and Continuous Fourier Transform

Digital Signal Processing Fundamentals

Digital Signal Processing Fundamentals
Author :
Publisher : Firewall Media
Total Pages : 432
Release :
ISBN-10 : 8170088054
ISBN-13 : 9788170088059
Rating : 4/5 (54 Downloads)

Synopsis Digital Signal Processing Fundamentals by : Ashfaq A. Khan

About the Book : - Digital Signal Processing Fundamentals Digital Signal Processing (DSP), as the term suggests, is the processing of signals using digital computers. These signals might be anything transferred from an analog domain to a digital form (e.g., temperature and pressure sensors, voices over a telephone, images from a camera, or data transmittal though computes). As a result, understanding the whole spectrum of DSP technology can be a daunting task for electrical engineering professionals and students alike. Digital Signal Processing Fundamentals provides a comprehensive look at DSP by introducing the important mathematical processes and then providing several application-specific tutorials for practicing the techniques learned. Beginning with general theory, including Fourier Analysis, the mathematics of complex numbers, Fourier transforms, differential equations, analog and digital filters, and much more; the book then delves into Matlab and Scilab tutorials with examples on solving practical engineering problems, followed by software applications on image processing and audio processing - complete with all the algorithms and source code. This is an invaluable resource for anyone seeking to understand how DSP works. Features: Provides a comprehensive overview and introduction of digital signal processing technology. Provides application with software algorithms Explains the concept of Nyquist frequency, orthogonal functions and method of finding Fourier coefficients Includes a CD-ROM with the source code for the projects plus Matlab and Scilab that generate graphs, figures in the book, and third party application software Discusses the techniques of digital filtering and windowing of input data, including: Butterwoth, Chebyshev, and elliptic filter formulation. Table Of Contents : Fourier Analysis Complex Number Arithmetic The Fourier Transform Solutions of Differential Equations Laplace Transforms and z-Tranforms Filter Design Digital Filters The FIR Filters Appendix A : Matlab Tutorial Appendix B : Scilab Tutorial Appendix C : Digital Filter Applications Appendix D : About the CD-ROM Appendix E : Software Licenses Appendix F : Bibliography Index About Author :- Ashfaq A. Khan (Baton Rouge, LA) is a senior software engineer for LIGO Livingston Observatory, with over 20 years of experience in system design. He has conducted several workshop and is the author of Practical Linux Programming: Device Drivers, Embedded Systems, and the Internet.

Digital Signal Processing

Digital Signal Processing
Author :
Publisher : Academic Press
Total Pages : 893
Release :
ISBN-10 : 9780124159822
ISBN-13 : 0124159826
Rating : 4/5 (22 Downloads)

Synopsis Digital Signal Processing by : Li Tan

Digital Signal Processing, Second Edition enables electrical engineers and technicians in the fields of biomedical, computer, and electronics engineering to master the essential fundamentals of DSP principles and practice. Many instructive worked examples are used to illustrate the material, and the use of mathematics is minimized for easier grasp of concepts. As such, this title is also useful to undergraduates in electrical engineering, and as a reference for science students and practicing engineers. The book goes beyond DSP theory, to show implementation of algorithms in hardware and software. Additional topics covered include adaptive filtering with noise reduction and echo cancellations, speech compression, signal sampling, digital filter realizations, filter design, multimedia applications, over-sampling, etc. More advanced topics are also covered, such as adaptive filters, speech compression such as PCM, u-law, ADPCM, and multi-rate DSP and over-sampling ADC. New to this edition: - MATLAB projects dealing with practical applications added throughout the book - New chapter (chapter 13) covering sub-band coding and wavelet transforms, methods that have become popular in the DSP field - New applications included in many chapters, including applications of DFT to seismic signals, electrocardiography data, and vibration signals - All real-time C programs revised for the TMS320C6713 DSK - Covers DSP principles with emphasis on communications and control applications - Chapter objectives, worked examples, and end-of-chapter exercises aid the reader in grasping key concepts and solving related problems - Website with MATLAB programs for simulation and C programs for real-time DSP

Fourier Methods in Imaging

Fourier Methods in Imaging
Author :
Publisher : John Wiley & Sons
Total Pages : 1005
Release :
ISBN-10 : 9781119991861
ISBN-13 : 1119991862
Rating : 4/5 (61 Downloads)

Synopsis Fourier Methods in Imaging by : Roger L. Easton Jr.

Fourier Methods in Imaging introduces the mathematical tools for modeling linear imaging systems to predict the action of the system or for solving for the input. The chapters are grouped into five sections, the first introduces the imaging “tasks” (direct, inverse, and system analysis), the basic concepts of linear algebra for vectors and functions, including complex-valued vectors, and inner products of vectors and functions. The second section defines "special" functions, mathematical operations, and transformations that are useful for describing imaging systems. Among these are the Fourier transforms of 1-D and 2-D function, and the Hankel and Radon transforms. This section also considers approximations of the Fourier transform. The third and fourth sections examine the discrete Fourier transform and the description of imaging systems as linear "filters", including the inverse, matched, Wiener and Wiener-Helstrom filters. The final section examines applications of linear system models to optical imaging systems, including holography. Provides a unified mathematical description of imaging systems. Develops a consistent mathematical formalism for characterizing imaging systems. Helps the reader develop an intuitive grasp of the most common mathematical methods, useful for describing the action of general linear systems on signals of one or more spatial dimensions. Offers parallel descriptions of continuous and discrete cases. Includes many graphical and pictorial examples to illustrate the concepts. This book helps students develop an understanding of mathematical tools for describing general one- and two-dimensional linear imaging systems, and will also serve as a reference for engineers and scientists

Applied Fourier Analysis

Applied Fourier Analysis
Author :
Publisher : Birkhäuser
Total Pages : 310
Release :
ISBN-10 : 9781493973934
ISBN-13 : 1493973932
Rating : 4/5 (34 Downloads)

Synopsis Applied Fourier Analysis by : Tim Olson

The first of its kind, this focused textbook serves as a self-contained resource for teaching from scratch the fundamental mathematics of Fourier analysis and illustrating some of its most current, interesting applications, including medical imaging and radar processing. Developed by the author from extensive classroom teaching experience, it provides a breadth of theory that allows students to appreciate the utility of the subject, but at as accessible a depth as possible. With myriad applications included, this book can be adapted to a one or two semester course in Fourier Analysis or serve as the basis for independent study. Applied Fourier Analysis assumes no prior knowledge of analysis from its readers, and begins by making the transition from linear algebra to functional analysis. It goes on to cover basic Fourier series and Fourier transforms before delving into applications in sampling and interpolation theory, digital communications, radar processing, medi cal imaging, and heat and wave equations. For all applications, ample practice exercises are given throughout, with collections of more in-depth problems built up into exploratory chapter projects. Illuminating videos are available on Springer.com and Link.Springer.com that present animated visualizations of several concepts. The content of the book itself is limited to what students will need to deal with in these fields, and avoids spending undue time studying proofs or building toward more abstract concepts. The book is perhaps best suited for courses aimed at upper division undergraduates and early graduates in mathematics, electrical engineering, mechanical engineering, computer science, physics, and other natural sciences, but in general it is a highly valuable resource for introducing a broad range of students to Fourier analysis.

The Discrete Fourier Transform

The Discrete Fourier Transform
Author :
Publisher : World Scientific
Total Pages : 400
Release :
ISBN-10 : 9812810293
ISBN-13 : 9789812810298
Rating : 4/5 (93 Downloads)

Synopsis The Discrete Fourier Transform by : D. Sundararajan

This authoritative book provides comprehensive coverage of practical Fourier analysis. It develops the concepts right from the basics and gradually guides the reader to the advanced topics. It presents the latest and practically efficient DFT algorithms, as well as the computation of discrete cosine and WalshOCoHadamard transforms. The large number of visual aids such as figures, flow graphs and flow charts makes the mathematical topic easy to understand. In addition, the numerous examples and the set of C-language programs (a supplement to the book) help greatly in understanding the theory and algorithms. Discrete Fourier analysis is covered first, followed by the continuous case, as the discrete case is easier to grasp and is very important in practice. This book will be useful as a text for regular or professional courses on Fourier analysis, and also as a supplementary text for courses on discrete signal processing, image processing, communications engineering and vibration analysis. Errata(s). Preface, Page viii. OC www.wspc.com/others/software/4610/OCO. The above links should be replaced with. OC www.worldscientific.com/doi/suppl/10.1142/4610/suppl_file/4610_software_free.zipOCO. Contents: The Discrete Sinusoid; The Discrete Fourier Transform; Properties of the DFT; Fundamentals of the PM DFT Algorithms; The u X 1 PM DFT Algorithms; The 2 X 2 PM DFT Algorithms; DFT Algorithms for Real Data OCo I; DFT Algorithms for Real Data OCo II; Two-Dimensional Discrete Fourier Transform; Aliasing and Other Effects; The Continuous-Time Fourier Series; The Continuous-Time Fourier Transform; Convolution and Correlation; Discrete Cosine Transform; Discrete WalshOCoHadamard Transform. Readership: Upper level undergraduate students, graduates, researchers and lecturers in engineering and applied mathematics."