Differential Equations: From Calculus to Dynamical Systems: Second Edition

Differential Equations: From Calculus to Dynamical Systems: Second Edition
Author :
Publisher : American Mathematical Soc.
Total Pages : 402
Release :
ISBN-10 : 9781470463298
ISBN-13 : 1470463296
Rating : 4/5 (98 Downloads)

Synopsis Differential Equations: From Calculus to Dynamical Systems: Second Edition by : Virginia W. Noonburg

A thoroughly modern textbook for the sophomore-level differential equations course. The examples and exercises emphasize modeling not only in engineering and physics but also in applied mathematics and biology. There is an early introduction to numerical methods and, throughout, a strong emphasis on the qualitative viewpoint of dynamical systems. Bifurcations and analysis of parameter variation is a persistent theme. Presuming previous exposure to only two semesters of calculus, necessary linear algebra is developed as needed. The exposition is very clear and inviting. The book would serve well for use in a flipped-classroom pedagogical approach or for self-study for an advanced undergraduate or beginning graduate student. This second edition of Noonburg's best-selling textbook includes two new chapters on partial differential equations, making the book usable for a two-semester sequence in differential equations. It includes exercises, examples, and extensive student projects taken from the current mathematical and scientific literature.

Ordinary Differential Equations

Ordinary Differential Equations
Author :
Publisher : Mathematical Association of America
Total Pages : 0
Release :
ISBN-10 : 1939512042
ISBN-13 : 9781939512048
Rating : 4/5 (42 Downloads)

Synopsis Ordinary Differential Equations by : Virginia W. Noonburg

Techniques for studying ordinary differential equations (ODEs) have become part of the required toolkit for students in the applied sciences. This book presents a modern treatment of the material found in a first undergraduate course in ODEs. Standard analytical methods for first- and second-order equations are covered first, followed by numerical and graphical methods, and bifurcation theory. Higher dimensional theory follows next via a study of linear systems of first-order equations, including background material in matrix algebra. A phase plane analysis of two-dimensional nonlinear systems is a highlight, while an introduction to dynamical systems and an extension of bifurcation theory to cover systems of equations will be of particular interest to biologists. With an emphasis on real-world problems, this book is an ideal basis for an undergraduate course in engineering and applied sciences such as biology, or as a refresher for beginning graduate students in these areas.

Differential Equations, Dynamical Systems, and an Introduction to Chaos

Differential Equations, Dynamical Systems, and an Introduction to Chaos
Author :
Publisher : Academic Press
Total Pages : 433
Release :
ISBN-10 : 9780123497031
ISBN-13 : 0123497035
Rating : 4/5 (31 Downloads)

Synopsis Differential Equations, Dynamical Systems, and an Introduction to Chaos by : Morris W. Hirsch

Thirty years in the making, this revised text by three of the world's leading mathematicians covers the dynamical aspects of ordinary differential equations. it explores the relations between dynamical systems and certain fields outside pure mathematics, and has become the standard textbook for graduate courses in this area. The Second Edition now brings students to the brink of contemporary research, starting from a background that includes only calculus and elementary linear algebra. The authors are tops in the field of advanced mathematics, including Steve Smale who is a recipient of.

Ordinary Differential Equations and Dynamical Systems

Ordinary Differential Equations and Dynamical Systems
Author :
Publisher : American Mathematical Society
Total Pages : 370
Release :
ISBN-10 : 9781470476410
ISBN-13 : 147047641X
Rating : 4/5 (10 Downloads)

Synopsis Ordinary Differential Equations and Dynamical Systems by : Gerald Teschl

This book provides a self-contained introduction to ordinary differential equations and dynamical systems suitable for beginning graduate students. The first part begins with some simple examples of explicitly solvable equations and a first glance at qualitative methods. Then the fundamental results concerning the initial value problem are proved: existence, uniqueness, extensibility, dependence on initial conditions. Furthermore, linear equations are considered, including the Floquet theorem, and some perturbation results. As somewhat independent topics, the Frobenius method for linear equations in the complex domain is established and Sturm–Liouville boundary value problems, including oscillation theory, are investigated. The second part introduces the concept of a dynamical system. The Poincaré–Bendixson theorem is proved, and several examples of planar systems from classical mechanics, ecology, and electrical engineering are investigated. Moreover, attractors, Hamiltonian systems, the KAM theorem, and periodic solutions are discussed. Finally, stability is studied, including the stable manifold and the Hartman–Grobman theorem for both continuous and discrete systems. The third part introduces chaos, beginning with the basics for iterated interval maps and ending with the Smale–Birkhoff theorem and the Melnikov method for homoclinic orbits. The text contains almost three hundred exercises. Additionally, the use of mathematical software systems is incorporated throughout, showing how they can help in the study of differential equations.

Introduction to Differential Equations with Dynamical Systems

Introduction to Differential Equations with Dynamical Systems
Author :
Publisher : Princeton University Press
Total Pages : 445
Release :
ISBN-10 : 9781400841325
ISBN-13 : 1400841321
Rating : 4/5 (25 Downloads)

Synopsis Introduction to Differential Equations with Dynamical Systems by : Stephen L. Campbell

Many textbooks on differential equations are written to be interesting to the teacher rather than the student. Introduction to Differential Equations with Dynamical Systems is directed toward students. This concise and up-to-date textbook addresses the challenges that undergraduate mathematics, engineering, and science students experience during a first course on differential equations. And, while covering all the standard parts of the subject, the book emphasizes linear constant coefficient equations and applications, including the topics essential to engineering students. Stephen Campbell and Richard Haberman--using carefully worded derivations, elementary explanations, and examples, exercises, and figures rather than theorems and proofs--have written a book that makes learning and teaching differential equations easier and more relevant. The book also presents elementary dynamical systems in a unique and flexible way that is suitable for all courses, regardless of length.

Differential Dynamical Systems, Revised Edition

Differential Dynamical Systems, Revised Edition
Author :
Publisher : SIAM
Total Pages : 392
Release :
ISBN-10 : 9781611974645
ISBN-13 : 161197464X
Rating : 4/5 (45 Downloads)

Synopsis Differential Dynamical Systems, Revised Edition by : James D. Meiss

Differential equations are the basis for models of any physical systems that exhibit smooth change. This book combines much of the material found in a traditional course on ordinary differential equations with an introduction to the more modern theory of dynamical systems. Applications of this theory to physics, biology, chemistry, and engineering are shown through examples in such areas as population modeling, fluid dynamics, electronics, and mechanics.? Differential Dynamical Systems begins with coverage of linear systems, including matrix algebra; the focus then shifts to foundational material on nonlinear differential equations, making heavy use of the contraction-mapping theorem. Subsequent chapters deal specifically with dynamical systems concepts?flow, stability, invariant manifolds, the phase plane, bifurcation, chaos, and Hamiltonian dynamics. This new edition contains several important updates and revisions throughout the book. Throughout the book, the author includes exercises to help students develop an analytical and geometrical understanding of dynamics. Many of the exercises and examples are based on applications and some involve computation; an appendix offers simple codes written in Maple?, Mathematica?, and MATLAB? software to give students practice with computation applied to dynamical systems problems.

Differential Equations, Dynamical Systems, and Linear Algebra

Differential Equations, Dynamical Systems, and Linear Algebra
Author :
Publisher : Academic Press
Total Pages : 373
Release :
ISBN-10 : 9780080873763
ISBN-13 : 0080873766
Rating : 4/5 (63 Downloads)

Synopsis Differential Equations, Dynamical Systems, and Linear Algebra by : Morris W. Hirsch

This book is about dynamical aspects of ordinary differential equations and the relations between dynamical systems and certain fields outside pure mathematics. A prominent role is played by the structure theory of linear operators on finite-dimensional vector spaces; the authors have included a self-contained treatment of that subject.

Nonlinear Differential Equations and Dynamical Systems

Nonlinear Differential Equations and Dynamical Systems
Author :
Publisher : Springer Science & Business Media
Total Pages : 287
Release :
ISBN-10 : 9783642971495
ISBN-13 : 3642971490
Rating : 4/5 (95 Downloads)

Synopsis Nonlinear Differential Equations and Dynamical Systems by : Ferdinand Verhulst

Bridging the gap between elementary courses and the research literature in this field, the book covers the basic concepts necessary to study differential equations. Stability theory is developed, starting with linearisation methods going back to Lyapunov and Poincaré, before moving on to the global direct method. The Poincaré-Lindstedt method is introduced to approximate periodic solutions, while at the same time proving existence by the implicit function theorem. The final part covers relaxation oscillations, bifurcation theory, centre manifolds, chaos in mappings and differential equations, and Hamiltonian systems. The subject material is presented from both the qualitative and the quantitative point of view, with many examples to illustrate the theory, enabling the reader to begin research after studying this book.

Differential Equations

Differential Equations
Author :
Publisher : MAA Press
Total Pages : 402
Release :
ISBN-10 : 1470451085
ISBN-13 : 9781470451080
Rating : 4/5 (85 Downloads)

Synopsis Differential Equations by : Virginia Walbran Noonburg

A thoroughly modern textbook for the sophomore-level differential equations course. The examples and exercises emphasize modeling not only in engineering and physics but also in applied mathematics and biology. There is an early introduction to numerical methods and, throughout, a strong emphasis on the qualitative viewpoint of dynamical systems. Bifurcations and analysis of parameter variation is a persistent theme. Presuming previous exposure to only two semesters of calculus, necessary linear algebra is developed as needed. The exposition is very clear and inviting. The book would serve wel.

An Introduction To Chaotic Dynamical Systems

An Introduction To Chaotic Dynamical Systems
Author :
Publisher : CRC Press
Total Pages : 280
Release :
ISBN-10 : 9780429981937
ISBN-13 : 0429981937
Rating : 4/5 (37 Downloads)

Synopsis An Introduction To Chaotic Dynamical Systems by : Robert Devaney

The study of nonlinear dynamical systems has exploded in the past 25 years, and Robert L. Devaney has made these advanced research developments accessible to undergraduate and graduate mathematics students as well as researchers in other disciplines with the introduction of this widely praised book. In this second edition of his best-selling text, Devaney includes new material on the orbit diagram fro maps of the interval and the Mandelbrot set, as well as striking color photos illustrating both Julia and Mandelbrot sets. This book assumes no prior acquaintance with advanced mathematical topics such as measure theory, topology, and differential geometry. Assuming only a knowledge of calculus, Devaney introduces many of the basic concepts of modern dynamical systems theory and leads the reader to the point of current research in several areas.