Deep Learning in Object Detection and Recognition

Deep Learning in Object Detection and Recognition
Author :
Publisher : Springer
Total Pages : 0
Release :
ISBN-10 : 9811506515
ISBN-13 : 9789811506512
Rating : 4/5 (15 Downloads)

Synopsis Deep Learning in Object Detection and Recognition by : Xiaoyue Jiang

This book discusses recent advances in object detection and recognition using deep learning methods, which have achieved great success in the field of computer vision and image processing. It provides a systematic and methodical overview of the latest developments in deep learning theory and its applications to computer vision, illustrating them using key topics, including object detection, face analysis, 3D object recognition, and image retrieval. The book offers a rich blend of theory and practice. It is suitable for students, researchers and practitioners interested in deep learning, computer vision and beyond and can also be used as a reference book. The comprehensive comparison of various deep-learning applications helps readers with a basic understanding of machine learning and calculus grasp the theories and inspires applications in other computer vision tasks.

Deep Learning in Object Recognition, Detection, and Segmentation

Deep Learning in Object Recognition, Detection, and Segmentation
Author :
Publisher : Foundations and Trends (R) in Signal Processing
Total Pages : 186
Release :
ISBN-10 : 168083116X
ISBN-13 : 9781680831160
Rating : 4/5 (6X Downloads)

Synopsis Deep Learning in Object Recognition, Detection, and Segmentation by : Xiaogang Wang

Deep Learning in Object Recognition, Detection, and Segmentation provides a comprehensive introductory overview of a topic that is having major impact on many areas of research in signal processing, computer vision, and machine learning.

Deep Learning for Computer Vision

Deep Learning for Computer Vision
Author :
Publisher : Machine Learning Mastery
Total Pages : 564
Release :
ISBN-10 :
ISBN-13 :
Rating : 4/5 ( Downloads)

Synopsis Deep Learning for Computer Vision by : Jason Brownlee

Step-by-step tutorials on deep learning neural networks for computer vision in python with Keras.

Object Detection with Deep Learning Models

Object Detection with Deep Learning Models
Author :
Publisher : CRC Press
Total Pages : 345
Release :
ISBN-10 : 9781000686791
ISBN-13 : 1000686795
Rating : 4/5 (91 Downloads)

Synopsis Object Detection with Deep Learning Models by : S Poonkuntran

Object Detection with Deep Learning Models discusses recent advances in object detection and recognition using deep learning methods, which have achieved great success in the field of computer vision and image processing. It provides a systematic and methodical overview of the latest developments in deep learning theory and its applications to computer vision, illustrating them using key topics, including object detection, face analysis, 3D object recognition, and image retrieval. The book offers a rich blend of theory and practice. It is suitable for students, researchers and practitioners interested in deep learning, computer vision and beyond and can also be used as a reference book. The comprehensive comparison of various deep-learning applications helps readers with a basic understanding of machine learning and calculus grasp the theories and inspires applications in other computer vision tasks. Features: A structured overview of deep learning in object detection A diversified collection of applications of object detection using deep neural networks Emphasize agriculture and remote sensing domains Exclusive discussion on moving object detection

Advancement of Deep Learning and its Applications in Object Detection and Recognition

Advancement of Deep Learning and its Applications in Object Detection and Recognition
Author :
Publisher : CRC Press
Total Pages : 319
Release :
ISBN-10 : 9781000880410
ISBN-13 : 1000880419
Rating : 4/5 (10 Downloads)

Synopsis Advancement of Deep Learning and its Applications in Object Detection and Recognition by : Roohie Naaz Mir

Object detection is a basic visual identification problem in computer vision that has been explored extensively over the years. Visual object detection seeks to discover objects of specific target classes in a given image with pinpoint accuracy and apply a class label to each object instance. Object recognition strategies based on deep learning have been intensively investigated in recent years as a result of the remarkable success of deep learning-based image categorization. In this book, we go through in detail detector architectures, feature learning, proposal generation, sampling strategies, and other issues that affect detection performance. The book describes every newly proposed novel solution but skips through the fundamentals so that readers can see the field's cutting edge more rapidly. Moreover, unlike prior object detection publications, this project analyses deep learning-based object identification methods systematically and exhaustively, and also gives the most recent detection solutions and a collection of noteworthy research trends. The book focuses primarily on step-by-step discussion, an extensive literature review, detailed analysis and discussion, and rigorous experimentation results. Furthermore, a practical approach is displayed and encouraged.

Practical Machine Learning for Computer Vision

Practical Machine Learning for Computer Vision
Author :
Publisher : "O'Reilly Media, Inc."
Total Pages : 481
Release :
ISBN-10 : 9781098102333
ISBN-13 : 1098102339
Rating : 4/5 (33 Downloads)

Synopsis Practical Machine Learning for Computer Vision by : Valliappa Lakshmanan

This practical book shows you how to employ machine learning models to extract information from images. ML engineers and data scientists will learn how to solve a variety of image problems including classification, object detection, autoencoders, image generation, counting, and captioning with proven ML techniques. This book provides a great introduction to end-to-end deep learning: dataset creation, data preprocessing, model design, model training, evaluation, deployment, and interpretability. Google engineers Valliappa Lakshmanan, Martin Görner, and Ryan Gillard show you how to develop accurate and explainable computer vision ML models and put them into large-scale production using robust ML architecture in a flexible and maintainable way. You'll learn how to design, train, evaluate, and predict with models written in TensorFlow or Keras. You'll learn how to: Design ML architecture for computer vision tasks Select a model (such as ResNet, SqueezeNet, or EfficientNet) appropriate to your task Create an end-to-end ML pipeline to train, evaluate, deploy, and explain your model Preprocess images for data augmentation and to support learnability Incorporate explainability and responsible AI best practices Deploy image models as web services or on edge devices Monitor and manage ML models

Deep Learning in Object Recognition, Detection, and Segmentation

Deep Learning in Object Recognition, Detection, and Segmentation
Author :
Publisher :
Total Pages : 165
Release :
ISBN-10 : 1680831178
ISBN-13 : 9781680831177
Rating : 4/5 (78 Downloads)

Synopsis Deep Learning in Object Recognition, Detection, and Segmentation by : Xiaogang Wang

As a major breakthrough in artificial intelligence, deep learning has achieved very impressive success in solving grand challenges in many fields including speech recognition, natural language processing, computer vision, image and video processing, and multimedia. This article provides a historical overview of deep learning and focus on its applications in object recognition, detection, and segmentation, which are key challenges of computer vision and have numerous applications to images and videos. The discussed research topics on object recognition include image classification on ImageNet, face recognition, and video classification. The detection part covers general object detection on ImageNet, pedestrian detection, face landmark detection (face alignment), and human landmark detection (pose estimation). On the segmentation side, the article discusses the most recent progress on scene labeling, semantic segmentation, face parsing, human parsing and saliency detection. Object recognition is considered as whole-image classification, while detection and segmentation are pixelwise classification tasks. Their fundamental differences will be discussed in this article. Fully convolutional neural networks and highly efficient forward and backward propagation algorithms specially designed for pixelwise classification task will be introduced. The covered application domains are also much diversified. Human and face images have regular structures, while general object and scene images have much more complex variations in geometric structures and layout. Videos include the temporal dimension. Therefore, they need to be processed with different deep models. All the selected domain applications have received tremendous attentions in the computer vision and multimedia communities. Through concrete examples of these applications, we explain the key points which make deep learning outperform conventional computer vision systems. (1) Different than traditional pattern recognition systems, which heavily rely on manually designed features, deep learning automatically learns hierarchical feature representations from massive training data and disentangles hidden factors of input data through multi-level nonlinear mappings. (2) Different than existing pattern recognition systems which sequentially design or train their key components, deep learning is able to jointly optimize all the components and crate synergy through close interactions among them. (3) While most machine learning models can be approximated with neural networks with shallow structures, for some tasks, the expressive power of deep models increases exponentially as their architectures go deep. Deep models are especially good at learning global contextual feature representation with their deep structures. (4) Benefitting from the large learning capacity of deep models, some classical computer vision challenges can be recast as high-dimensional data transform problems and can be solved from new perspectives. Finally, some open questions and future works regarding to deep learning in object recognition, detection, and segmentation will be discussed.

Practical Machine Learning and Image Processing

Practical Machine Learning and Image Processing
Author :
Publisher : Apress
Total Pages : 177
Release :
ISBN-10 : 9781484241493
ISBN-13 : 1484241495
Rating : 4/5 (93 Downloads)

Synopsis Practical Machine Learning and Image Processing by : Himanshu Singh

Gain insights into image-processing methodologies and algorithms, using machine learning and neural networks in Python. This book begins with the environment setup, understanding basic image-processing terminology, and exploring Python concepts that will be useful for implementing the algorithms discussed in the book. You will then cover all the core image processing algorithms in detail before moving onto the biggest computer vision library: OpenCV. You’ll see the OpenCV algorithms and how to use them for image processing. The next section looks at advanced machine learning and deep learning methods for image processing and classification. You’ll work with concepts such as pulse coupled neural networks, AdaBoost, XG boost, and convolutional neural networks for image-specific applications. Later you’ll explore how models are made in real time and then deployed using various DevOps tools. All the concepts in Practical Machine Learning and Image Processing are explained using real-life scenarios. After reading this book you will be able to apply image processing techniques and make machine learning models for customized application. What You Will LearnDiscover image-processing algorithms and their applications using Python Explore image processing using the OpenCV library Use TensorFlow, scikit-learn, NumPy, and other libraries Work with machine learning and deep learning algorithms for image processing Apply image-processing techniques to five real-time projects Who This Book Is For Data scientists and software developers interested in image processing and computer vision.

Machine Learning for Computer Vision

Machine Learning for Computer Vision
Author :
Publisher : Springer
Total Pages : 265
Release :
ISBN-10 : 9783642286612
ISBN-13 : 3642286615
Rating : 4/5 (12 Downloads)

Synopsis Machine Learning for Computer Vision by : Roberto Cipolla

Computer vision is the science and technology of making machines that see. It is concerned with the theory, design and implementation of algorithms that can automatically process visual data to recognize objects, track and recover their shape and spatial layout. The International Computer Vision Summer School - ICVSS was established in 2007 to provide both an objective and clear overview and an in-depth analysis of the state-of-the-art research in Computer Vision. The courses are delivered by world renowned experts in the field, from both academia and industry, and cover both theoretical and practical aspects of real Computer Vision problems. The school is organized every year by University of Cambridge (Computer Vision and Robotics Group) and University of Catania (Image Processing Lab). Different topics are covered each year. A summary of the past Computer Vision Summer Schools can be found at: http://www.dmi.unict.it/icvss This edited volume contains a selection of articles covering some of the talks and tutorials held during the last editions of the school. The chapters provide an in-depth overview of challenging areas with key references to the existing literature.

Advanced Methods and Deep Learning in Computer Vision

Advanced Methods and Deep Learning in Computer Vision
Author :
Publisher : Academic Press
Total Pages : 584
Release :
ISBN-10 : 9780128221495
ISBN-13 : 0128221496
Rating : 4/5 (95 Downloads)

Synopsis Advanced Methods and Deep Learning in Computer Vision by : E. R. Davies

Advanced Methods and Deep Learning in Computer Vision presents advanced computer vision methods, emphasizing machine and deep learning techniques that have emerged during the past 5–10 years. The book provides clear explanations of principles and algorithms supported with applications. Topics covered include machine learning, deep learning networks, generative adversarial networks, deep reinforcement learning, self-supervised learning, extraction of robust features, object detection, semantic segmentation, linguistic descriptions of images, visual search, visual tracking, 3D shape retrieval, image inpainting, novelty and anomaly detection. This book provides easy learning for researchers and practitioners of advanced computer vision methods, but it is also suitable as a textbook for a second course on computer vision and deep learning for advanced undergraduates and graduate students. - Provides an important reference on deep learning and advanced computer methods that was created by leaders in the field - Illustrates principles with modern, real-world applications - Suitable for self-learning or as a text for graduate courses