Deep Learning and Other Soft Computing Techniques

Deep Learning and Other Soft Computing Techniques
Author :
Publisher : Springer Nature
Total Pages : 282
Release :
ISBN-10 : 9783031294471
ISBN-13 : 3031294475
Rating : 4/5 (71 Downloads)

Synopsis Deep Learning and Other Soft Computing Techniques by : Nguyen Hoang Phuong

This book focuses on the use of artificial intelligence (AI) and computational intelligence (CI) in medical and related applications. Applications include all aspects of medicine: from diagnostics (including analysis of medical images and medical data) to therapeutics (including drug design and radiotherapy) to epidemic- and pandemic-related public health policies. Corresponding techniques include machine learning (especially deep learning), techniques for processing expert knowledge (e.g., fuzzy techniques), and advanced techniques of applied mathematics (such as innovative probabilistic and graph-based techniques). The book also shows that these techniques can be used in many other applications areas, such as finance, transportation, physics. This book helps practitioners and researchers to learn more about AI and CI methods and their biomedical (and related) applications—and to further develop this important research direction.

Advanced Soft Computing Techniques in Data Science, IoT and Cloud Computing

Advanced Soft Computing Techniques in Data Science, IoT and Cloud Computing
Author :
Publisher : Springer Nature
Total Pages : 443
Release :
ISBN-10 : 9783030756574
ISBN-13 : 3030756572
Rating : 4/5 (74 Downloads)

Synopsis Advanced Soft Computing Techniques in Data Science, IoT and Cloud Computing by : Sujata Dash

This book plays a significant role in improvising human life to a great extent. The new applications of soft computing can be regarded as an emerging field in computer science, automatic control engineering, medicine, biology application, natural environmental engineering, and pattern recognition. Now, the exemplar model for soft computing is human brain. The use of various techniques of soft computing is nowadays successfully implemented in many domestic, commercial, and industrial applications due to the low-cost and very high-performance digital processors and also the decline price of the memory chips. This is the main reason behind the wider expansion of soft computing techniques and its application areas. These computing methods also play a significant role in the design and optimization in diverse engineering disciplines. With the influence and the development of the Internet of things (IoT) concept, the need for using soft computing techniques has become more significant than ever. In general, soft computing methods are closely similar to biological processes than traditional techniques, which are mostly based on formal logical systems, such as sentential logic and predicate logic, or rely heavily on computer-aided numerical analysis. Soft computing techniques are anticipated to complement each other. The aim of these techniques is to accept imprecision, uncertainties, and approximations to get a rapid solution. However, recent advancements in representation soft computing algorithms (fuzzy logic,evolutionary computation, machine learning, and probabilistic reasoning) generate a more intelligent and robust system providing a human interpretable, low-cost, approximate solution. Soft computing-based algorithms have demonstrated great performance to a variety of areas including multimedia retrieval, fault tolerance, system modelling, network architecture, Web semantics, big data analytics, time series, biomedical and health informatics, etc. Soft computing approaches such as genetic programming (GP), support vector machine–firefly algorithm (SVM-FFA), artificial neural network (ANN), and support vector machine–wavelet (SVM–Wavelet) have emerged as powerful computational models. These have also shown significant success in dealing with massive data analysis for large number of applications. All the researchers and practitioners will be highly benefited those who are working in field of computer engineering, medicine, biology application, signal processing, and mechanical engineering. This book is a good collection of state-of-the-art approaches for soft computing-based applications to various engineering fields. It is very beneficial for the new researchers and practitioners working in the field to quickly know the best performing methods. They would be able to compare different approaches and can carry forward their research in the most important area of research which has direct impact on betterment of the human life and health. This book is very useful because there is no book in the market which provides a good collection of state-of-the-art methods of soft computing-based models for multimedia retrieval, fault tolerance, system modelling, network architecture, Web semantics, big data analytics, time series, and biomedical and health informatics.

Learning and Soft Computing

Learning and Soft Computing
Author :
Publisher : MIT Press
Total Pages : 556
Release :
ISBN-10 : 0262112558
ISBN-13 : 9780262112550
Rating : 4/5 (58 Downloads)

Synopsis Learning and Soft Computing by : Vojislav Kecman

This textbook provides a thorough introduction to the field of learning from experimental data and soft computing. Support vector machines (SVM) and neural networks (NN) are the mathematical structures, or models, that underlie learning, while fuzzy logic systems (FLS) enable us to embed structured human knowledge into workable algorithms. The book assumes that it is not only useful, but necessary, to treat SVM, NN, and FLS as parts of a connected whole. Throughout, the theory and algorithms are illustrated by practical examples, as well as by problem sets and simulated experiments. This approach enables the reader to develop SVM, NN, and FLS in addition to understanding them. The book also presents three case studies: on NN-based control, financial time series analysis, and computer graphics. A solutions manual and all of the MATLAB programs needed for the simulated experiments are available.

Soft Computing in Electromagnetics

Soft Computing in Electromagnetics
Author :
Publisher : Cambridge University Press
Total Pages : 0
Release :
ISBN-10 : 1107122481
ISBN-13 : 9781107122482
Rating : 4/5 (81 Downloads)

Synopsis Soft Computing in Electromagnetics by : Balamati Choudhury

Soft computing techniques are emerging as an important tool in solving design, performance and optimisation problems in electromagnetics. Soft Computing in Electromagnetics offers detailed discussion on the application of soft computing concepts in the field of metamaterial antennas, radar absorbers, transmission line characterisation and optimised radar absorbing material (RAM) and introduces implementation of soft computing tools in a relatively new area of metamaterials. The soft computing methods are used to optimise fault detection, electromagnetic propagation and path loss detection. The development of two CAD packages for design of metamaterial split ring resonators (SRR) and path-loss prediction is discussed. The concepts are explained with the help of algorithms and the corresponding software codes. Numerical examples and MATLAB codes are provided throughout the text to facilitate understanding.

Soft Computing in Machine Learning

Soft Computing in Machine Learning
Author :
Publisher : Springer
Total Pages : 120
Release :
ISBN-10 : 9783319055336
ISBN-13 : 331905533X
Rating : 4/5 (36 Downloads)

Synopsis Soft Computing in Machine Learning by : Sang-Yong Rhee

As users or consumers are now demanding smarter devices, intelligent systems are revolutionizing by utilizing machine learning. Machine learning as part of intelligent systems is already one of the most critical components in everyday tools ranging from search engines and credit card fraud detection to stock market analysis. You can train machines to perform some things, so that they can automatically detect, diagnose, and solve a variety of problems. The intelligent systems have made rapid progress in developing the state of the art in machine learning based on smart and deep perception. Using machine learning, the intelligent systems make widely applications in automated speech recognition, natural language processing, medical diagnosis, bioinformatics, and robot locomotion. This book aims at introducing how to treat a substantial amount of data, to teach machines and to improve decision making models. And this book specializes in the developments of advanced intelligent systems through machine learning. It consists of 11 contributions that features illumination change detection, generator of electronic educational publications, intelligent call triage system, recognition of rocks at uranium deposits, graphics processing units, mathematical model of hit phenomena, selection and mutation in genetic algorithm, hands and arms motion estimation, application of wavelet network, Kanizsa triangle illusion, and support vector machine regression. Also, it describes how to apply the machine learning for the intelligent systems. This edition is published in original, peer reviewed contributions covering from initial design to final prototypes and verifications.

Advances in Soft Computing and Machine Learning in Image Processing

Advances in Soft Computing and Machine Learning in Image Processing
Author :
Publisher : Springer
Total Pages : 711
Release :
ISBN-10 : 9783319637549
ISBN-13 : 3319637541
Rating : 4/5 (49 Downloads)

Synopsis Advances in Soft Computing and Machine Learning in Image Processing by : Aboul Ella Hassanien

This book is a collection of the latest applications of methods from soft computing and machine learning in image processing. It explores different areas ranging from image segmentation to the object recognition using complex approaches, and includes the theory of the methodologies used to provide an overview of the application of these tools in image processing. The material has been compiled from a scientific perspective, and the book is primarily intended for undergraduate and postgraduate science, engineering, and computational mathematics students. It can also be used for courses on artificial intelligence, advanced image processing, and computational intelligence, and is a valuable resource for researchers in the evolutionary computation, artificial intelligence and image processing communities.

Deep Learning for Coders with fastai and PyTorch

Deep Learning for Coders with fastai and PyTorch
Author :
Publisher : O'Reilly Media
Total Pages : 624
Release :
ISBN-10 : 9781492045496
ISBN-13 : 1492045497
Rating : 4/5 (96 Downloads)

Synopsis Deep Learning for Coders with fastai and PyTorch by : Jeremy Howard

Deep learning is often viewed as the exclusive domain of math PhDs and big tech companies. But as this hands-on guide demonstrates, programmers comfortable with Python can achieve impressive results in deep learning with little math background, small amounts of data, and minimal code. How? With fastai, the first library to provide a consistent interface to the most frequently used deep learning applications. Authors Jeremy Howard and Sylvain Gugger, the creators of fastai, show you how to train a model on a wide range of tasks using fastai and PyTorch. You’ll also dive progressively further into deep learning theory to gain a complete understanding of the algorithms behind the scenes. Train models in computer vision, natural language processing, tabular data, and collaborative filtering Learn the latest deep learning techniques that matter most in practice Improve accuracy, speed, and reliability by understanding how deep learning models work Discover how to turn your models into web applications Implement deep learning algorithms from scratch Consider the ethical implications of your work Gain insight from the foreword by PyTorch cofounder, Soumith Chintala

Deep Learning in Science

Deep Learning in Science
Author :
Publisher : Cambridge University Press
Total Pages : 387
Release :
ISBN-10 : 9781108845359
ISBN-13 : 1108845355
Rating : 4/5 (59 Downloads)

Synopsis Deep Learning in Science by : Pierre Baldi

Rigorous treatment of the theory of deep learning from first principles, with applications to beautiful problems in the natural sciences.

Deep Learning and Parallel Computing Environment for Bioengineering Systems

Deep Learning and Parallel Computing Environment for Bioengineering Systems
Author :
Publisher : Academic Press
Total Pages : 282
Release :
ISBN-10 : 9780128172933
ISBN-13 : 0128172932
Rating : 4/5 (33 Downloads)

Synopsis Deep Learning and Parallel Computing Environment for Bioengineering Systems by : Arun Kumar Sangaiah

Deep Learning and Parallel Computing Environment for Bioengineering Systems delivers a significant forum for the technical advancement of deep learning in parallel computing environment across bio-engineering diversified domains and its applications. Pursuing an interdisciplinary approach, it focuses on methods used to identify and acquire valid, potentially useful knowledge sources. Managing the gathered knowledge and applying it to multiple domains including health care, social networks, mining, recommendation systems, image processing, pattern recognition and predictions using deep learning paradigms is the major strength of this book. This book integrates the core ideas of deep learning and its applications in bio engineering application domains, to be accessible to all scholars and academicians. The proposed techniques and concepts in this book can be extended in future to accommodate changing business organizations' needs as well as practitioners' innovative ideas. - Presents novel, in-depth research contributions from a methodological/application perspective in understanding the fusion of deep machine learning paradigms and their capabilities in solving a diverse range of problems - Illustrates the state-of-the-art and recent developments in the new theories and applications of deep learning approaches applied to parallel computing environment in bioengineering systems - Provides concepts and technologies that are successfully used in the implementation of today's intelligent data-centric critical systems and multi-media Cloud-Big data