Data Modeling For Quality
Download Data Modeling For Quality full books in PDF, epub, and Kindle. Read online free Data Modeling For Quality ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads.
Author |
: Matthew West |
Publisher |
: Elsevier |
Total Pages |
: 408 |
Release |
: 2011-02-07 |
ISBN-10 |
: 9780123751072 |
ISBN-13 |
: 0123751071 |
Rating |
: 4/5 (72 Downloads) |
Synopsis Developing High Quality Data Models by : Matthew West
Developing High Quality Data Models provides an introduction to the key principles of data modeling. It explains the purpose of data models in both developing an Enterprise Architecture and in supporting Information Quality; common problems in data model development; and how to develop high quality data models, in particular conceptual, integration, and enterprise data models. The book is organized into four parts. Part 1 provides an overview of data models and data modeling including the basics of data model notation; types and uses of data models; and the place of data models in enterprise architecture. Part 2 introduces some general principles for data models, including principles for developing ontologically based data models; and applications of the principles for attributes, relationship types, and entity types. Part 3 presents an ontological framework for developing consistent data models. Part 4 provides the full data model that has been in development throughout the book. The model was created using Jotne EPM Technologys EDMVisualExpress data modeling tool. This book was designed for all types of modelers: from those who understand data modeling basics but are just starting to learn about data modeling in practice, through to experienced data modelers seeking to expand their knowledge and skills and solve some of the more challenging problems of data modeling. - Uses a number of common data model patterns to explain how to develop data models over a wide scope in a way that is consistent and of high quality - Offers generic data model templates that are reusable in many applications and are fundamental for developing more specific templates - Develops ideas for creating consistent approaches to high quality data models
Author |
: Graham Witt |
Publisher |
: Technics Publications |
Total Pages |
: 304 |
Release |
: 2021-01-20 |
ISBN-10 |
: 1634629132 |
ISBN-13 |
: 9781634629133 |
Rating |
: 4/5 (32 Downloads) |
Synopsis Data Modeling for Quality by : Graham Witt
This book is for all data modelers, data architects, and database designers―be they novices who want to learn what's involved in data modeling, or experienced modelers who want to brush up their skills. A novice will not only gain an overview of data modeling, they will also learn how to follow the data modeling process, including the activities required for each step. The experienced practitioner will discover (or rediscover) techniques to ensure that data models accurately reflect business requirements. This book describes rigorous yet easily implemented approaches to: modeling of business information requirements for review by business stakeholders before development of the logical data model normalizing data, based on simple questions rather than the formal definitions which many modelers find intimidating naming and defining concepts and attributes modeling of time-variant data documenting business rules governing both the real world and data data modeling in an Agile project managing data model change in any type of project transforming a business information model to a logical data model against which developers can code implementing the logical data model in a traditional relational DBMS, an SQL:2003-compliant DBMS, an object-relational DBMS, or in XML. Part 1 describes business information models in-depth, including: the importance of modeling business information requirements before embarking on a logical data model business concepts (entity classes) attributes of business concepts attribute classes as an alternative to DBMS data types relationships between business concepts time-variant data generalization and specialization of business concepts naming and defining the components of the business information model business rules governing data, including a distinction between real-world rules and data rules. Part 2 journeys from requirements to a working data resource, covering: sourcing data requirements developing the business information model communicating it to business stakeholders for review, both as diagrams and verbally managing data model change transforming the business information model into a logical data model of stored data for implementation in a relational or object-relational DBMS attribute value representation and data constraints (important but often overlooked) modeling data vault, dimensional and XML data.
Author |
: Michael C. Reingruber |
Publisher |
: John Wiley & Sons |
Total Pages |
: 394 |
Release |
: 1994-12-17 |
ISBN-10 |
: UCSD:31822018846469 |
ISBN-13 |
: |
Rating |
: 4/5 (69 Downloads) |
Synopsis The Data Modeling Handbook by : Michael C. Reingruber
This practical, field-tested reference doesn't just explain the characteristics of finished, high-quality data models--it shows readers exactly how to build one. It presents rules and best practices in several notations, including IDEFIX, Martin, Chen, and Finkelstein. The book offers dozens of real-world examples and go beyond basic theory to provide users with practical guidance.
Author |
: Len Silverston |
Publisher |
: John Wiley & Sons |
Total Pages |
: 572 |
Release |
: 2011-08-08 |
ISBN-10 |
: 9781118082324 |
ISBN-13 |
: 111808232X |
Rating |
: 4/5 (24 Downloads) |
Synopsis The Data Model Resource Book, Volume 1 by : Len Silverston
A quick and reliable way to build proven databases for core business functions Industry experts raved about The Data Model Resource Book when it was first published in March 1997 because it provided a simple, cost-effective way to design databases for core business functions. Len Silverston has now revised and updated the hugely successful 1st Edition, while adding a companion volume to take care of more specific requirements of different businesses. This updated volume provides a common set of data models for specific core functions shared by most businesses like human resources management, accounting, and project management. These models are standardized and are easily replicated by developers looking for ways to make corporate database development more efficient and cost effective. This guide is the perfect complement to The Data Model Resource CD-ROM, which is sold separately and provides the powerful design templates discussed in the book in a ready-to-use electronic format. A free demonstration CD-ROM is available with each copy of the print book to allow you to try before you buy the full CD-ROM.
Author |
: Paulraj Ponniah |
Publisher |
: John Wiley & Sons |
Total Pages |
: 460 |
Release |
: 2007-06-30 |
ISBN-10 |
: 9780470141014 |
ISBN-13 |
: 0470141018 |
Rating |
: 4/5 (14 Downloads) |
Synopsis Data Modeling Fundamentals by : Paulraj Ponniah
The purpose of this book is to provide a practical approach for IT professionals to acquire the necessary knowledge and expertise in data modeling to function effectively. It begins with an overview of basic data modeling concepts, introduces the methods and techniques, provides a comprehensive case study to present the details of the data model components, covers the implementation of the data model with emphasis on quality components, and concludes with a presentation of a realistic approach to data modeling. It clearly describes how a generic data model is created to represent truly the enterprise information requirements.
Author |
: John Carlis |
Publisher |
: Addison-Wesley Professional |
Total Pages |
: 629 |
Release |
: 2000-11-10 |
ISBN-10 |
: 9780134176536 |
ISBN-13 |
: 0134176537 |
Rating |
: 4/5 (36 Downloads) |
Synopsis Mastering Data Modeling by : John Carlis
Data modeling is one of the most critical phases in the database application development process, but also the phase most likely to fail. A master data modeler must come into any organization, understand its data requirements, and skillfully model the data for applications that most effectively serve organizational needs. Mastering Data Modeling is a complete guide to becoming a successful data modeler. Featuring a requirements-driven approach, this book clearly explains fundamental concepts, introduces a user-oriented data modeling notation, and describes a rigorous, step-by-step process for collecting, modeling, and documenting the kinds of data that users need. Assuming no prior knowledge, Mastering Data Modeling sets forth several fundamental problems of data modeling, such as reconciling the software developer's demand for rigor with the users' equally valid need to speak their own (sometimes vague) natural language. In addition, it describes the good habits that help you respond to these fundamental problems. With these good habits in mind, the book describes the Logical Data Structure (LDS) notation and the process of controlled evolution by which you can create low-cost, user-approved data models that resist premature obsolescence. Also included is an encyclopedic analysis of all data shapes that you will encounter. Most notably, the book describes The Flow, a loosely scripted process by which you and the users gradually but continuously improve an LDS until it faithfully represents the information needs. Essential implementation and technology issues are also covered. You will learn about such vital topics as: The fundamental problems of data modeling The good habits that help a data modeler be effective and economical LDS notation, which encourages these good habits How to read an LDS aloud--in declarative English sentences How to write a well-formed (syntactically correct) LDS How to get users to name the parts of an LDS with words from their own business vocabulary How to visualize data for an LDS A catalog of LDS shapes that recur throughout all data models The Flow--the template for your conversations with users How to document an LDS for users, data modelers, and technologists How to map an LDS to a relational schema How LDS differs from other notations and why "Story interludes" appear throughout the book, illustrating real-world successes of the LDS notation and controlled evolution process. Numerous exercises help you master critical skills. In addition, two detailed, annotated sample conversations with users show you the process of controlled evolution in action.
Author |
: Carlo Batini |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 276 |
Release |
: 2006-09-27 |
ISBN-10 |
: 9783540331735 |
ISBN-13 |
: 3540331735 |
Rating |
: 4/5 (35 Downloads) |
Synopsis Data Quality by : Carlo Batini
Poor data quality can seriously hinder or damage the efficiency and effectiveness of organizations and businesses. The growing awareness of such repercussions has led to major public initiatives like the "Data Quality Act" in the USA and the "European 2003/98" directive of the European Parliament. Batini and Scannapieco present a comprehensive and systematic introduction to the wide set of issues related to data quality. They start with a detailed description of different data quality dimensions, like accuracy, completeness, and consistency, and their importance in different types of data, like federated data, web data, or time-dependent data, and in different data categories classified according to frequency of change, like stable, long-term, and frequently changing data. The book's extensive description of techniques and methodologies from core data quality research as well as from related fields like data mining, probability theory, statistical data analysis, and machine learning gives an excellent overview of the current state of the art. The presentation is completed by a short description and critical comparison of tools and practical methodologies, which will help readers to resolve their own quality problems. This book is an ideal combination of the soundness of theoretical foundations and the applicability of practical approaches. It is ideally suited for everyone – researchers, students, or professionals – interested in a comprehensive overview of data quality issues. In addition, it will serve as the basis for an introductory course or for self-study on this topic.
Author |
: Panos Alexopoulos |
Publisher |
: "O'Reilly Media, Inc." |
Total Pages |
: 332 |
Release |
: 2020-08-19 |
ISBN-10 |
: 9781492054221 |
ISBN-13 |
: 1492054224 |
Rating |
: 4/5 (21 Downloads) |
Synopsis Semantic Modeling for Data by : Panos Alexopoulos
What value does semantic data modeling offer? As an information architect or data science professional, let’s say you have an abundance of the right data and the technology to extract business gold—but you still fail. The reason? Bad data semantics. In this practical and comprehensive field guide, author Panos Alexopoulos takes you on an eye-opening journey through semantic data modeling as applied in the real world. You’ll learn how to master this craft to increase the usability and value of your data and applications. You’ll also explore the pitfalls to avoid and dilemmas to overcome for building high-quality and valuable semantic representations of data. Understand the fundamental concepts, phenomena, and processes related to semantic data modeling Examine the quirks and challenges of semantic data modeling and learn how to effectively leverage the available frameworks and tools Avoid mistakes and bad practices that can undermine your efforts to create good data models Learn about model development dilemmas, including representation, expressiveness and content, development, and governance Organize and execute semantic data initiatives in your organization, tackling technical, strategic, and organizational challenges
Author |
: Graeme Simsion |
Publisher |
: Elsevier |
Total Pages |
: 561 |
Release |
: 2004-12-03 |
ISBN-10 |
: 9780080488677 |
ISBN-13 |
: 0080488676 |
Rating |
: 4/5 (77 Downloads) |
Synopsis Data Modeling Essentials by : Graeme Simsion
Data Modeling Essentials, Third Edition, covers the basics of data modeling while focusing on developing a facility in techniques, rather than a simple familiarization with "the rules". In order to enable students to apply the basics of data modeling to real models, the book addresses the realities of developing systems in real-world situations by assessing the merits of a variety of possible solutions as well as using language and diagramming methods that represent industry practice. This revised edition has been given significantly expanded coverage and reorganized for greater reader comprehension even as it retains its distinctive hallmarks of readability and usefulness. Beginning with the basics, the book provides a thorough grounding in theory before guiding the reader through the various stages of applied data modeling and database design. Later chapters address advanced subjects, including business rules, data warehousing, enterprise-wide modeling and data management. It includes an entirely new section discussing the development of logical and physical modeling, along with new material describing a powerful technique for model verification. It also provides an excellent resource for additional lectures and exercises. This text is the ideal reference for data modelers, data architects, database designers, DBAs, and systems analysts, as well as undergraduate and graduate-level students looking for a real-world perspective. - Thorough coverage of the fundamentals and relevant theory - Recognition and support for the creative side of the process - Expanded coverage of applied data modeling includes new chapters on logical and physical database design - New material describing a powerful technique for model verification - Unique coverage of the practical and human aspects of modeling, such as working with business specialists, managing change, and resolving conflict
Author |
: Michael Blaha |
Publisher |
: CRC Press |
Total Pages |
: 262 |
Release |
: 2010-06-01 |
ISBN-10 |
: 9781439819906 |
ISBN-13 |
: 1439819904 |
Rating |
: 4/5 (06 Downloads) |
Synopsis Patterns of Data Modeling by : Michael Blaha
Best-selling author and database expert with more than 25 years of experience modeling application and enterprise data, Dr. Michael Blaha provides tried and tested data model patterns, to help readers avoid common modeling mistakes and unnecessary frustration on their way to building effective data models. Unlike the typical methodology book, Patterns of Data Modeling provides advanced techniques for those who have mastered the basics. Recognizing that database representation sets the path for software, determines its flexibility, affects its quality, and influences whether it succeeds or fails, the text focuses on databases rather than programming. It is one of the first books to apply the popular patterns perspective to database systems and data models. It offers practical advice on the core aspects of applications and provides authoritative coverage of mathematical templates, antipatterns, archetypes, identity, canonical models, and relational database design.