Constructing And Testing Logistic Regression Models For Binary Data
Download Constructing And Testing Logistic Regression Models For Binary Data full books in PDF, epub, and Kindle. Read online free Constructing And Testing Logistic Regression Models For Binary Data ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads.
Author |
: Anne F. Bradley |
Publisher |
: |
Total Pages |
: 478 |
Release |
: 1992 |
ISBN-10 |
: OSU:32435055980346 |
ISBN-13 |
: |
Rating |
: 4/5 (46 Downloads) |
Synopsis Constructing and Testing Logistic Regression Models for Binary Data by : Anne F. Bradley
Author |
: Don O. Loftsgaarden |
Publisher |
: |
Total Pages |
: 40 |
Release |
: 1992 |
ISBN-10 |
: MINN:31951D03001300E |
ISBN-13 |
: |
Rating |
: 4/5 (0E Downloads) |
Synopsis Constructing and Testing Logistic Regression Models for Binary Data by : Don O. Loftsgaarden
Author |
: Joseph M. Hilbe |
Publisher |
: CRC Press |
Total Pages |
: 170 |
Release |
: 2016-04-05 |
ISBN-10 |
: 9781498709583 |
ISBN-13 |
: 1498709583 |
Rating |
: 4/5 (83 Downloads) |
Synopsis Practical Guide to Logistic Regression by : Joseph M. Hilbe
Practical Guide to Logistic Regression covers the key points of the basic logistic regression model and illustrates how to use it properly to model a binary response variable. This powerful methodology can be used to analyze data from various fields, including medical and health outcomes research, business analytics and data science, ecology, fishe
Author |
: Joseph M. Hilbe |
Publisher |
: CRC Press |
Total Pages |
: 658 |
Release |
: 2009-05-11 |
ISBN-10 |
: 9781420075779 |
ISBN-13 |
: 1420075772 |
Rating |
: 4/5 (79 Downloads) |
Synopsis Logistic Regression Models by : Joseph M. Hilbe
Logistic Regression Models presents an overview of the full range of logistic models, including binary, proportional, ordered, partially ordered, and unordered categorical response regression procedures. Other topics discussed include panel, survey, skewed, penalized, and exact logistic models. The text illustrates how to apply the various models t
Author |
: Keith McNulty |
Publisher |
: CRC Press |
Total Pages |
: 272 |
Release |
: 2021-07-29 |
ISBN-10 |
: 9781000427899 |
ISBN-13 |
: 1000427897 |
Rating |
: 4/5 (99 Downloads) |
Synopsis Handbook of Regression Modeling in People Analytics by : Keith McNulty
Despite the recent rapid growth in machine learning and predictive analytics, many of the statistical questions that are faced by researchers and practitioners still involve explaining why something is happening. Regression analysis is the best ‘swiss army knife’ we have for answering these kinds of questions. This book is a learning resource on inferential statistics and regression analysis. It teaches how to do a wide range of statistical analyses in both R and in Python, ranging from simple hypothesis testing to advanced multivariate modelling. Although it is primarily focused on examples related to the analysis of people and talent, the methods easily transfer to any discipline. The book hits a ‘sweet spot’ where there is just enough mathematical theory to support a strong understanding of the methods, but with a step-by-step guide and easily reproducible examples and code, so that the methods can be put into practice immediately. This makes the book accessible to a wide readership, from public and private sector analysts and practitioners to students and researchers. Key Features: 16 accompanying datasets across a wide range of contexts (e.g. academic, corporate, sports, marketing) Clear step-by-step instructions on executing the analyses Clear guidance on how to interpret results Primary instruction in R but added sections for Python coders Discussion exercises and data exercises for each of the main chapters Final chapter of practice material and datasets ideal for class homework or project work.
Author |
: Ewen Harrison |
Publisher |
: CRC Press |
Total Pages |
: 354 |
Release |
: 2020-12-31 |
ISBN-10 |
: 9781000226164 |
ISBN-13 |
: 1000226166 |
Rating |
: 4/5 (64 Downloads) |
Synopsis R for Health Data Science by : Ewen Harrison
In this age of information, the manipulation, analysis, and interpretation of data have become a fundamental part of professional life; nowhere more so than in the delivery of healthcare. From the understanding of disease and the development of new treatments, to the diagnosis and management of individual patients, the use of data and technology is now an integral part of the business of healthcare. Those working in healthcare interact daily with data, often without realising it. The conversion of this avalanche of information to useful knowledge is essential for high-quality patient care. R for Health Data Science includes everything a healthcare professional needs to go from R novice to R guru. By the end of this book, you will be taking a sophisticated approach to health data science with beautiful visualisations, elegant tables, and nuanced analyses. Features Provides an introduction to the fundamentals of R for healthcare professionals Highlights the most popular statistical approaches to health data science Written to be as accessible as possible with minimal mathematics Emphasises the importance of truly understanding the underlying data through the use of plots Includes numerous examples that can be adapted for your own data Helps you create publishable documents and collaborate across teams With this book, you are in safe hands – Prof. Harrison is a clinician and Dr. Pius is a data scientist, bringing 25 years’ combined experience of using R at the coal face. This content has been taught to hundreds of individuals from a variety of backgrounds, from rank beginners to experts moving to R from other platforms.
Author |
: Paul Roback |
Publisher |
: CRC Press |
Total Pages |
: 436 |
Release |
: 2021-01-14 |
ISBN-10 |
: 9781439885406 |
ISBN-13 |
: 1439885400 |
Rating |
: 4/5 (06 Downloads) |
Synopsis Beyond Multiple Linear Regression by : Paul Roback
Beyond Multiple Linear Regression: Applied Generalized Linear Models and Multilevel Models in R is designed for undergraduate students who have successfully completed a multiple linear regression course, helping them develop an expanded modeling toolkit that includes non-normal responses and correlated structure. Even though there is no mathematical prerequisite, the authors still introduce fairly sophisticated topics such as likelihood theory, zero-inflated Poisson, and parametric bootstrapping in an intuitive and applied manner. The case studies and exercises feature real data and real research questions; thus, most of the data in the textbook comes from collaborative research conducted by the authors and their students, or from student projects. Every chapter features a variety of conceptual exercises, guided exercises, and open-ended exercises using real data. After working through this material, students will develop an expanded toolkit and a greater appreciation for the wider world of data and statistical modeling. A solutions manual for all exercises is available to qualified instructors at the book’s website at www.routledge.com, and data sets and Rmd files for all case studies and exercises are available at the authors’ GitHub repo (https://github.com/proback/BeyondMLR)
Author |
: Alicia A. Johnson |
Publisher |
: CRC Press |
Total Pages |
: 606 |
Release |
: 2022-03-03 |
ISBN-10 |
: 9781000529562 |
ISBN-13 |
: 1000529568 |
Rating |
: 4/5 (62 Downloads) |
Synopsis Bayes Rules! by : Alicia A. Johnson
Praise for Bayes Rules!: An Introduction to Applied Bayesian Modeling “A thoughtful and entertaining book, and a great way to get started with Bayesian analysis.” Andrew Gelman, Columbia University “The examples are modern, and even many frequentist intro books ignore important topics (like the great p-value debate) that the authors address. The focus on simulation for understanding is excellent.” Amy Herring, Duke University “I sincerely believe that a generation of students will cite this book as inspiration for their use of – and love for – Bayesian statistics. The narrative holds the reader’s attention and flows naturally – almost conversationally. Put simply, this is perhaps the most engaging introductory statistics textbook I have ever read. [It] is a natural choice for an introductory undergraduate course in applied Bayesian statistics." Yue Jiang, Duke University “This is by far the best book I’ve seen on how to (and how to teach students to) do Bayesian modeling and understand the underlying mathematics and computation. The authors build intuition and scaffold ideas expertly, using interesting real case studies, insightful graphics, and clear explanations. The scope of this book is vast – from basic building blocks to hierarchical modeling, but the authors’ thoughtful organization allows the reader to navigate this journey smoothly. And impressively, by the end of the book, one can run sophisticated Bayesian models and actually understand the whys, whats, and hows.” Paul Roback, St. Olaf College “The authors provide a compelling, integrated, accessible, and non-religious introduction to statistical modeling using a Bayesian approach. They outline a principled approach that features computational implementations and model assessment with ethical implications interwoven throughout. Students and instructors will find the conceptual and computational exercises to be fresh and engaging.” Nicholas Horton, Amherst College An engaging, sophisticated, and fun introduction to the field of Bayesian statistics, Bayes Rules!: An Introduction to Applied Bayesian Modeling brings the power of modern Bayesian thinking, modeling, and computing to a broad audience. In particular, the book is an ideal resource for advanced undergraduate statistics students and practitioners with comparable experience. Bayes Rules! empowers readers to weave Bayesian approaches into their everyday practice. Discussions and applications are data driven. A natural progression from fundamental to multivariable, hierarchical models emphasizes a practical and generalizable model building process. The evaluation of these Bayesian models reflects the fact that a data analysis does not exist in a vacuum. Features • Utilizes data-driven examples and exercises. • Emphasizes the iterative model building and evaluation process. • Surveys an interconnected range of multivariable regression and classification models. • Presents fundamental Markov chain Monte Carlo simulation. • Integrates R code, including RStan modeling tools and the bayesrules package. • Encourages readers to tap into their intuition and learn by doing. • Provides a friendly and inclusive introduction to technical Bayesian concepts. • Supports Bayesian applications with foundational Bayesian theory.
Author |
: William Lawless |
Publisher |
: Academic Press |
Total Pages |
: 306 |
Release |
: 2019-02-21 |
ISBN-10 |
: 9780128176375 |
ISBN-13 |
: 0128176377 |
Rating |
: 4/5 (75 Downloads) |
Synopsis Artificial Intelligence for the Internet of Everything by : William Lawless
Artificial Intelligence for the Internet of Everything considers the foundations, metrics and applications of IoE systems. It covers whether devices and IoE systems should speak only to each other, to humans or to both. Further, the book explores how IoE systems affect targeted audiences (researchers, machines, robots, users) and society, as well as future ecosystems. It examines the meaning, value and effect that IoT has had and may have on ordinary life, in business, on the battlefield, and with the rise of intelligent and autonomous systems. Based on an artificial intelligence (AI) perspective, this book addresses how IoE affects sensing, perception, cognition and behavior. Each chapter addresses practical, measurement, theoretical and research questions about how these "things may affect individuals, teams, society or each other. Of particular focus is what may happen when these "things begin to reason, communicate and act autonomously on their own, whether independently or interdependently with other "things. - Considers the foundations, metrics and applications of IoE systems - Debates whether IoE systems should speak to humans and each other - Explores how IoE systems affect targeted audiences and society - Discusses theoretical IoT ecosystem models
Author |
: Jason W. Osborne |
Publisher |
: SAGE Publications |
Total Pages |
: 489 |
Release |
: 2014-02-26 |
ISBN-10 |
: 9781483312095 |
ISBN-13 |
: 1483312097 |
Rating |
: 4/5 (95 Downloads) |
Synopsis Best Practices in Logistic Regression by : Jason W. Osborne
Jason W. Osborne’s Best Practices in Logistic Regression provides students with an accessible, applied approach that communicates logistic regression in clear and concise terms. The book effectively leverages readers’ basic intuitive understanding of simple and multiple regression to guide them into a sophisticated mastery of logistic regression. Osborne’s applied approach offers students and instructors a clear perspective, elucidated through practical and engaging tools that encourage student comprehension.