Computational Plasticity
Download Computational Plasticity full books in PDF, epub, and Kindle. Read online free Computational Plasticity ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads.
Author |
: Eduardo A. de Souza Neto |
Publisher |
: John Wiley & Sons |
Total Pages |
: 718 |
Release |
: 2011-09-21 |
ISBN-10 |
: 9781119964544 |
ISBN-13 |
: 1119964547 |
Rating |
: 4/5 (44 Downloads) |
Synopsis Computational Methods for Plasticity by : Eduardo A. de Souza Neto
The subject of computational plasticity encapsulates the numerical methods used for the finite element simulation of the behaviour of a wide range of engineering materials considered to be plastic – i.e. those that undergo a permanent change of shape in response to an applied force. Computational Methods for Plasticity: Theory and Applications describes the theory of the associated numerical methods for the simulation of a wide range of plastic engineering materials; from the simplest infinitesimal plasticity theory to more complex damage mechanics and finite strain crystal plasticity models. It is split into three parts - basic concepts, small strains and large strains. Beginning with elementary theory and progressing to advanced, complex theory and computer implementation, it is suitable for use at both introductory and advanced levels. The book: Offers a self-contained text that allows the reader to learn computational plasticity theory and its implementation from one volume. Includes many numerical examples that illustrate the application of the methodologies described. Provides introductory material on related disciplines and procedures such as tensor analysis, continuum mechanics and finite elements for non-linear solid mechanics. Is accompanied by purpose-developed finite element software that illustrates many of the techniques discussed in the text, downloadable from the book’s companion website. This comprehensive text will appeal to postgraduate and graduate students of civil, mechanical, aerospace and materials engineering as well as applied mathematics and courses with computational mechanics components. It will also be of interest to research engineers, scientists and software developers working in the field of computational solid mechanics.
Author |
: Eugenio Oñate |
Publisher |
: Springer |
Total Pages |
: 443 |
Release |
: 2017-09-09 |
ISBN-10 |
: 9783319608853 |
ISBN-13 |
: 3319608851 |
Rating |
: 4/5 (53 Downloads) |
Synopsis Advances in Computational Plasticity by : Eugenio Oñate
This book brings together some 20 chapters on state-of-the-art research in the broad field of computational plasticity with applications in civil and mechanical engineering, metal forming processes, geomechanics, nonlinear structural analysis, composites, biomechanics and multi-scale analysis of materials, among others. The chapters are written by world leaders in the different fields of computational plasticity.
Author |
: Fionn Dunne |
Publisher |
: Oxford University Press |
Total Pages |
: 259 |
Release |
: 2005-06-09 |
ISBN-10 |
: 9780198568261 |
ISBN-13 |
: 0198568266 |
Rating |
: 4/5 (61 Downloads) |
Synopsis Introduction to Computational Plasticity by : Fionn Dunne
This book gives an introduction to computational plasticity and includes the kinematics of large deformations, together with relevant continuum mechanics. Central to the book is its focus on computational plasticity, and we cover an introduction to the finite element method which includes both quasi-static and dynamic problems. We then go on to describe explicit and implicit implementations of plasticity models in to finite element software. Throughout the book, we describe thegeneral, multiaxial form of the theory but uniquely, wherever possible, reduce the equations to their simplest, uniaxial form to develop understanding of the general theory and, we hope, physical insight. We provide several examples of implicit and explicit implementations of von Mises time-independentand visco-plasticity in to the commercial code ABAQUS (including the fortran coding), which should prove invaluable to research students and practising engineers developing ABAQUS 'UMATs'. The book bridges the gap between undergraduate material on plasticity and existing advanced texts on nonlinear computational mechanics, which makes it ideal for students and practising engineers alike. It introduces a range of engineering applications, including superplasticity, porous plasticity, cyclicplasticity and thermo-mechanical fatigue, to emphasize the subject's relevance and importance.
Author |
: A. Anandarajah |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 665 |
Release |
: 2011-01-04 |
ISBN-10 |
: 9781441963796 |
ISBN-13 |
: 1441963790 |
Rating |
: 4/5 (96 Downloads) |
Synopsis Computational Methods in Elasticity and Plasticity by : A. Anandarajah
Computational Methods in Elasticity and Plasticity: Solids and Porous Media presents the latest developments in the area of elastic and elasto-plastic finite element modeling of solids, porous media and pressure-dependent materials and structures. The book covers the following topics in depth: the mathematical foundations of solid mechanics, the finite element method for solids and porous media, the theory of plasticity and the finite element implementation of elasto-plastic constitutive models. The book also includes: -A detailed coverage of elasticity for isotropic and anisotropic solids. -A detailed treatment of nonlinear iterative methods that could be used for nonlinear elastic and elasto-plastic analyses. -A detailed treatment of a kinematic hardening von Mises model that could be used to simulate cyclic behavior of solids. -Discussion of recent advances in the analysis of porous media and pressure-dependent materials in more detail than other books currently available. Computational Methods in Elasticity and Plasticity: Solids and Porous Media also contains problem sets, worked examples and a solutions manual for instructors.
Author |
: Amir Khoei |
Publisher |
: Elsevier |
Total Pages |
: 483 |
Release |
: 2010-07-07 |
ISBN-10 |
: 9780080529707 |
ISBN-13 |
: 0080529704 |
Rating |
: 4/5 (07 Downloads) |
Synopsis Computational Plasticity in Powder Forming Processes by : Amir Khoei
The powder forming process is an extremely effective method of manufacturing structural metal components with high-dimensional accuracy on a mass production basis. The process is applicable to nearly all industry sectors. It offers competitive engineering solutions in terms of technical performance and manufacturing costs. For these reasons, powder metallurgy is developing faster than other metal forming technology. Computational Plasticity in Powder Forming Proceses takes a specific look at the application of computer-aided engineering in modern powder forming technologies, with particular attention given to the Finite Element Method (FEM). FEM analysis provides detailed information on conditions within the processed material, which is often more complete than can be obtained even from elaborate physical experiments, and the numerical simulation makes it possible to examine a range of designs, or operating conditions economically.* Describes the mechanical behavior of powder materials using classical and modern constitutive theories.* Devoted to the application of adaptive FEM strategy in the analysis of powder forming processes.* 2D and 3D numerical modeling of powder forming processes are presented, using advanced plasticity models.
Author |
: Michael Trapp |
Publisher |
: Springer |
Total Pages |
: 99 |
Release |
: 2018-03-06 |
ISBN-10 |
: 9783319772066 |
ISBN-13 |
: 3319772066 |
Rating |
: 4/5 (66 Downloads) |
Synopsis Computational Plasticity for Finite Elements by : Michael Trapp
This volume demonstrates the use of FORTRAN for numerical computing in the context of the finite element method. FORTRAN is still an important programming language for computational mechanics and all classical finite element codes are written in this language, some of them even offer an interface to link user-code to the main program. This feature is especially important for the development and investigation of new engineering structures or materials. Thus, this volume gives a simple introduction to programming of elasto-plastic material behavior, which is, for example, the prerequisite for implementing new constitutive laws into a commercial finite element program.
Author |
: Ronaldo I. Borja |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 261 |
Release |
: 2013-06-14 |
ISBN-10 |
: 9783642385476 |
ISBN-13 |
: 3642385478 |
Rating |
: 4/5 (76 Downloads) |
Synopsis Plasticity by : Ronaldo I. Borja
There have been many excellent books written on the subject of plastic deformation in solids, but rarely can one find a textbook on this subject. “Plasticity Modeling & Computation” is a textbook written specifically for students who want to learn the theoretical, mathematical, and computational aspects of inelastic deformation in solids. It adopts a simple narrative style that is not mathematically overbearing, and has been written to emulate a professor giving a lecture on this subject inside a classroom. Each section is written to provide a balance between the relevant equations and the explanations behind them. Where relevant, sections end with one or more exercises designed to reinforce the understanding of the “lecture.” Color figures enhance the presentation and make the book very pleasant to read. For professors planning to use this textbook for their classes, the contents are sufficient for Parts A and B that can be taught in sequence over a period of two semesters or quarters.
Author |
: J.C. Simo |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 405 |
Release |
: 2006-05-07 |
ISBN-10 |
: 9780387227634 |
ISBN-13 |
: 0387227636 |
Rating |
: 4/5 (34 Downloads) |
Synopsis Computational Inelasticity by : J.C. Simo
A description of the theoretical foundations of inelasticity, its numerical formulation and implementation, constituting a representative sample of state-of-the-art methodology currently used in inelastic calculations. Among the numerous topics covered are small deformation plasticity and viscoplasticity, convex optimisation theory, integration algorithms for the constitutive equation of plasticity and viscoplasticity, the variational setting of boundary value problems and discretization by finite element methods. Also addressed are the generalisation of the theory to non-smooth yield surface, mathematical numerical analysis issues of general return mapping algorithms, the generalisation to finite-strain inelasticity theory, objective integration algorithms for rate constitutive equations, the theory of hyperelastic-based plasticity models and small and large deformation viscoelasticity. Of great interest to researchers and graduate students in various branches of engineering, especially civil, aeronautical and mechanical, and applied mathematics.
Author |
: Jagabanduhu Chakrabarty |
Publisher |
: Elsevier |
Total Pages |
: 895 |
Release |
: 2012-12-02 |
ISBN-10 |
: 9780080481364 |
ISBN-13 |
: 0080481361 |
Rating |
: 4/5 (64 Downloads) |
Synopsis Theory of Plasticity by : Jagabanduhu Chakrabarty
Plasticity is concerned with the mechanics of materials deformed beyond their elastic limit. A strong knowledge of plasticity is essential for engineers dealing with a wide range of engineering problems, such as those encountered in the forming of metals, the design of pressure vessels, the mechanics of impact, civil and structural engineering, as well as the understanding of fatigue and the economical design of structures. Theory of Plasticity is the most comprehensive reference on the subject as well as the most up to date -- no other significant Plasticity reference has been published recently, making this of great interest to academics and professionals. This new edition presents extensive new material on the use of computational methods, plus coverage of important developments in cyclic plasticity and soil plasticity. - A complete plasticity reference for graduate students, researchers and practicing engineers; no other book offers such an up to date or comprehensive reference on this key continuum mechanics subject - Updates with new material on computational analysis and applications, new end of chapter exercises - Plasticity is a key subject in all mechanical engineering disciplines, as well as in manufacturing engineering and civil engineering. Chakrabarty is one of the subject's leading figures.
Author |
: Arjen van Ooyen |
Publisher |
: Academic Press |
Total Pages |
: 586 |
Release |
: 2017-06-23 |
ISBN-10 |
: 9780128038727 |
ISBN-13 |
: 0128038721 |
Rating |
: 4/5 (27 Downloads) |
Synopsis The Rewiring Brain by : Arjen van Ooyen
The adult brain is not as hard-wired as traditionally thought. By modifying their small- or large-scale morphology, neurons can make new synaptic connections or break existing ones (structural plasticity). Structural changes accompany memory formation and learning, and are induced by neurogenesis, neurodegeneration and brain injury such as stroke. Exploring the role of structural plasticity in the brain can be greatly assisted by mathematical and computational models, as they enable us to bridge the gap between system-level dynamics and lower level cellular and molecular processes. However, most traditional neural network models have fixed neuronal morphologies and a static connectivity pattern, with plasticity merely arising from changes in the strength of existing synapses (synaptic plasticity). In The Rewiring Brain, the editors bring together for the first time contemporary modeling studies that investigate the implications of structural plasticity for brain function and pathology. Starting with an experimental background on structural plasticity in the adult brain, the book covers computational studies on homeostatic structural plasticity, the impact of structural plasticity on cognition and cortical connectivity, the interaction between synaptic and structural plasticity, neurogenesis-related structural plasticity, and structural plasticity in neurological disorders. Structural plasticity adds a whole new dimension to brain plasticity, and The Rewiring Brain shows how computational approaches may help to gain a better understanding of the full adaptive potential of the adult brain. The book is written for both computational and experimental neuroscientists. - Reviews the current state of knowledge of structural plasticity in the adult brain - Gives a comprehensive overview of computational studies on structural plasticity - Provides insights into the potential driving forces of structural plasticity and the functional implications of structural plasticity for learning and memory - Serves as inspiration for developing novel treatment strategies for stimulating functional repair after brain damage