Computational Modeling of Drugs Against Alzheimer’s Disease

Computational Modeling of Drugs Against Alzheimer’s Disease
Author :
Publisher : Springer Nature
Total Pages : 492
Release :
ISBN-10 : 9781071633113
ISBN-13 : 1071633112
Rating : 4/5 (13 Downloads)

Synopsis Computational Modeling of Drugs Against Alzheimer’s Disease by : Kunal Roy

This second edition volume expands on the previous edition with updated descriptions on different computational methods encompassing ligand-based, structure-based, and combined approaches with their recent applications in anti-Alzheimer drug design. Different background topics like recent advancements in research on the development of novel therapies and their implications in the treatment of Alzheimer’s Disease (AD) have also been covered for completeness. Special topics like basic information science methods for insight into neurodegenerative pathogenesis, drug repositioning and network pharmacology, and online tools to predict ADMET behavior with reference to anti-Alzheimer drug development have also been included. In the Neuromethods series style, chapter include the kind of detail and key advice from the specialists needed to get successful results in your laboratory. Cutting-edge and thorough, Computational Modeling of Drugs Against Alzheimer’s Disease, Second Edition is a valuable resource for all researchers and scientists interested in learning more about this important and developing field.

Alzheimer's Disease

Alzheimer's Disease
Author :
Publisher : Royal Society of Chemistry
Total Pages : 531
Release :
ISBN-10 : 9781839162749
ISBN-13 : 1839162740
Rating : 4/5 (49 Downloads)

Synopsis Alzheimer's Disease by : Thimmaiah Govindaraju

Alzheimer’s disease is an increasingly common form of dementia and despite rising interest in discovery of novel treatments and investigation into aetiology, there are no currently approved treatments that directly tackle the causes of the condition. Due to its multifactorial pathogenesis, current treatments are directed against symptoms and even precise diagnosis remains difficult as the majority of cases are diagnosed symptomatically and usually confirmed only by autopsy. Alzheimer’s Disease: Recent Findings in Pathophysiology, Diagnostic and Therapeutic Modalities provides a comprehensive overview from aetiology and neurochemistry to diagnosis, evaluation and management of Alzheimer's disease, and latest therapeutic approaches. Intended to provide an introduction to all aspects of the disease and latest developments, this book is ideal for students, postgraduates and researchers in neurochemistry, neurological drug discovery and Alzheimer’s disease.

Current Trends in Computational Modeling for Drug Discovery

Current Trends in Computational Modeling for Drug Discovery
Author :
Publisher : Springer Nature
Total Pages : 311
Release :
ISBN-10 : 9783031338717
ISBN-13 : 3031338715
Rating : 4/5 (17 Downloads)

Synopsis Current Trends in Computational Modeling for Drug Discovery by : Supratik Kar

This contributed volume offers a comprehensive discussion on how to design and discover pharmaceuticals using computational modeling techniques. The different chapters deal with the classical and most advanced techniques, theories, protocols, databases, and tools employed in computer-aided drug design (CADD) covering diverse therapeutic classes. Multiple components of Structure-Based Drug Discovery (SBDD) along with its workflow and associated challenges are presented while potential leads for Alzheimer’s disease (AD), antiviral agents, anti-human immunodeficiency virus (HIV) drugs, and leads for Severe Fever with Thrombocytopenia Syndrome Virus (SFTSV) disease are discussed in detail. Computational toxicological aspects in drug design and discovery, screening adverse effects, and existing or future in silico tools are highlighted, while a novel in silico tool, RASAR, which can be a major technique for small to big datasets when not much experimental data are present, is presented. The book also introduces the reader to the major drug databases covering drug molecules, chemicals, therapeutic targets, metabolomics, and peptides, which are great resources for drug discovery employing drug repurposing, high throughput, and virtual screening. This volume is a great tool for graduates, researchers, academics, and industrial scientists working in the fields of cheminformatics, bioinformatics, computational biology, and chemistry.

Computational Models of Brain and Behavior

Computational Models of Brain and Behavior
Author :
Publisher : John Wiley & Sons
Total Pages : 588
Release :
ISBN-10 : 9781119159070
ISBN-13 : 1119159075
Rating : 4/5 (70 Downloads)

Synopsis Computational Models of Brain and Behavior by : Ahmed A. Moustafa

A comprehensive Introduction to the world of brain and behavior computational models This book provides a broad collection of articles covering different aspects of computational modeling efforts in psychology and neuroscience. Specifically, it discusses models that span different brain regions (hippocampus, amygdala, basal ganglia, visual cortex), different species (humans, rats, fruit flies), and different modeling methods (neural network, Bayesian, reinforcement learning, data fitting, and Hodgkin-Huxley models, among others). Computational Models of Brain and Behavior is divided into four sections: (a) Models of brain disorders; (b) Neural models of behavioral processes; (c) Models of neural processes, brain regions and neurotransmitters, and (d) Neural modeling approaches. It provides in-depth coverage of models of psychiatric disorders, including depression, posttraumatic stress disorder (PTSD), schizophrenia, and dyslexia; models of neurological disorders, including Alzheimer’s disease, Parkinson’s disease, and epilepsy; early sensory and perceptual processes; models of olfaction; higher/systems level models and low-level models; Pavlovian and instrumental conditioning; linking information theory to neurobiology; and more. Covers computational approximations to intellectual disability in down syndrome Discusses computational models of pharmacological and immunological treatment in Alzheimer's disease Examines neural circuit models of serotonergic system (from microcircuits to cognition) Educates on information theory, memory, prediction, and timing in associative learning Computational Models of Brain and Behavior is written for advanced undergraduate, Master's and PhD-level students—as well as researchers involved in computational neuroscience modeling research.

Drug-like Properties: Concepts, Structure Design and Methods

Drug-like Properties: Concepts, Structure Design and Methods
Author :
Publisher : Elsevier
Total Pages : 549
Release :
ISBN-10 : 9780080557618
ISBN-13 : 0080557619
Rating : 4/5 (18 Downloads)

Synopsis Drug-like Properties: Concepts, Structure Design and Methods by : Li Di

Of the thousands of novel compounds that a drug discovery project team invents and that bind to the therapeutic target, typically only a fraction of these have sufficient ADME/Tox properties to become a drug product. Understanding ADME/Tox is critical for all drug researchers, owing to its increasing importance in advancing high quality candidates to clinical studies and the processes of drug discovery. If the properties are weak, the candidate will have a high risk of failure or be less desirable as a drug product. This book is a tool and resource for scientists engaged in, or preparing for, the selection and optimization process. The authors describe how properties affect in vivo pharmacological activity and impact in vitro assays. Individual drug-like properties are discussed from a practical point of view, such as solubility, permeability and metabolic stability, with regard to fundamental understanding, applications of property data in drug discovery and examples of structural modifications that have achieved improved property performance. The authors also review various methods for the screening (high throughput), diagnosis (medium throughput) and in-depth (low throughput) analysis of drug properties. - Serves as an essential working handbook aimed at scientists and students in medicinal chemistry - Provides practical, step-by-step guidance on property fundamentals, effects, structure-property relationships, and structure modification strategies - Discusses improvements in pharmacokinetics from a practical chemist's standpoint

Improving and Accelerating Therapeutic Development for Nervous System Disorders

Improving and Accelerating Therapeutic Development for Nervous System Disorders
Author :
Publisher : National Academies Press
Total Pages : 107
Release :
ISBN-10 : 9780309292498
ISBN-13 : 0309292492
Rating : 4/5 (98 Downloads)

Synopsis Improving and Accelerating Therapeutic Development for Nervous System Disorders by : Institute of Medicine

Improving and Accelerating Therapeutic Development for Nervous System Disorders is the summary of a workshop convened by the IOM Forum on Neuroscience and Nervous System Disorders to examine opportunities to accelerate early phases of drug development for nervous system drug discovery. Workshop participants discussed challenges in neuroscience research for enabling faster entry of potential treatments into first-in-human trials, explored how new and emerging tools and technologies may improve the efficiency of research, and considered mechanisms to facilitate a more effective and efficient development pipeline. There are several challenges to the current drug development pipeline for nervous system disorders. The fundamental etiology and pathophysiology of many nervous system disorders are unknown and the brain is inaccessible to study, making it difficult to develop accurate models. Patient heterogeneity is high, disease pathology can occur years to decades before becoming clinically apparent, and diagnostic and treatment biomarkers are lacking. In addition, the lack of validated targets, limitations related to the predictive validity of animal models - the extent to which the model predicts clinical efficacy - and regulatory barriers can also impede translation and drug development for nervous system disorders. Improving and Accelerating Therapeutic Development for Nervous System Disorders identifies avenues for moving directly from cellular models to human trials, minimizing the need for animal models to test efficacy, and discusses the potential benefits and risks of such an approach. This report is a timely discussion of opportunities to improve early drug development with a focus toward preclinical trials.

Computational Approaches: Drug Discovery and Design in Medicinal Chemistry and Bioinformatics

Computational Approaches: Drug Discovery and Design in Medicinal Chemistry and Bioinformatics
Author :
Publisher :
Total Pages : 387
Release :
ISBN-10 : 3036527788
ISBN-13 : 9783036527789
Rating : 4/5 (88 Downloads)

Synopsis Computational Approaches: Drug Discovery and Design in Medicinal Chemistry and Bioinformatics by : Marco Tutone

This book is a collection of original research articles in the field of computer-aided drug design. It reports the use of current and validated computational approaches applied to drug discovery as well as the development of new computational tools to identify new and more potent drugs.

Natural Product-based Synthetic Drug Molecules in Alzheimer's Disease

Natural Product-based Synthetic Drug Molecules in Alzheimer's Disease
Author :
Publisher : Springer Nature
Total Pages : 447
Release :
ISBN-10 : 9789819960385
ISBN-13 : 981996038X
Rating : 4/5 (85 Downloads)

Synopsis Natural Product-based Synthetic Drug Molecules in Alzheimer's Disease by : Abha Sharma

This book illustrates the importance of natural products as the source for the development of novel drugs for the treatment of neurodegenerative disorders, including Alzheimer's disease. It also highlights the role of reactive oxygen species and altered metal homeostasis in the progression of Alzheimer’s disease and examines the potential of antioxidants and anti-chelating agents in the clinical intervention of neurodegenerative diseases. The book also discusses the role of neuroinflammation in the pathogenesis of Alzheimer’s disease. The chapters provide information about the drug targets, progress in the development of natural product-based therapeutics, biomarkers, fluorescent diagnostic tools, and theranostic for Alzheimer's disease. The book also provides information about the design and synthesis of natural product-based derivatives against the various targets of Alzheimer's disease including epigenetic targets and the metal dyshomeostasis hypothesis. Cutting across different disciplines, this book is a valuable source for neuroscientists, chemical biologists, pharmaceutical researchers, and synthetic biologists.

Fundamentals of Neural Network Modeling

Fundamentals of Neural Network Modeling
Author :
Publisher : MIT Press
Total Pages : 450
Release :
ISBN-10 : 0262161753
ISBN-13 : 9780262161756
Rating : 4/5 (53 Downloads)

Synopsis Fundamentals of Neural Network Modeling by : Randolph W. Parks

Provides an introduction to the neural network modeling of complex cognitive and neuropsychological processes. Over the past few years, computer modeling has become more prevalent in the clinical sciences as an alternative to traditional symbol-processing models. This book provides an introduction to the neural network modeling of complex cognitive and neuropsychological processes. It is intended to make the neural network approach accessible to practicing neuropsychologists, psychologists, neurologists, and psychiatrists. It will also be a useful resource for computer scientists, mathematicians, and interdisciplinary cognitive neuroscientists. The editors (in their introduction) and contributors explain the basic concepts behind modeling and avoid the use of high-level mathematics. The book is divided into four parts. Part I provides an extensive but basic overview of neural network modeling, including its history, present, and future trends. It also includes chapters on attention, memory, and primate studies. Part II discusses neural network models of behavioral states such as alcohol dependence, learned helplessness, depression, and waking and sleeping. Part III presents neural network models of neuropsychological tests such as the Wisconsin Card Sorting Task, the Tower of Hanoi, and the Stroop Test. Finally, part IV describes the application of neural network models to dementia: models of acetycholine and memory, verbal fluency, Parkinsons disease, and Alzheimer's disease. Contributors J. Wesson Ashford, Rajendra D. Badgaiyan, Jean P. Banquet, Yves Burnod, Nelson Butters, John Cardoso, Agnes S. Chan, Jean-Pierre Changeux, Kerry L. Coburn, Jonathan D. Cohen, Laurent Cohen, Jose L. Contreras-Vidal, Antonio R. Damasio, Hanna Damasio, Stanislas Dehaene, Martha J. Farah, Joaquin M. Fuster, Philippe Gaussier, Angelika Gissler, Dylan G. Harwood, Michael E. Hasselmo, J, Allan Hobson, Sam Leven, Daniel S. Levine, Debra L. Long, Roderick K. Mahurin, Raymond L. Ownby, Randolph W. Parks, Michael I. Posner, David P. Salmon, David Servan-Schreiber, Chantal E. Stern, Jeffrey P. Sutton, Lynette J. Tippett, Daniel Tranel, Bradley Wyble

Deep Generative Models for Integrative Analysis of Alzheimer's Biomarkers

Deep Generative Models for Integrative Analysis of Alzheimer's Biomarkers
Author :
Publisher : IGI Global
Total Pages : 536
Release :
ISBN-10 : 9798369364444
ISBN-13 :
Rating : 4/5 (44 Downloads)

Synopsis Deep Generative Models for Integrative Analysis of Alzheimer's Biomarkers by : Kumar, Abhishek

The integration of generative AI and deep learning techniques for Alzheimer's disease detection significantly impacts the research community by advancing diagnostic accuracy and providing a comprehensive understanding of the disease. By combining multiple data modalities, including imaging, genetics, and clinical data, researchers can improve diagnostic precision and develop personalized treatment strategies. Generative AI facilitates efficient data utilization through dataset augmentation, fostering innovation and collaboration across interdisciplinary fields. These methodologies forward the exploration of new diagnostic tools while expediting their application in clinical practice, benefiting patients through early detection and intervention. The incorporation of generative AI may enhance research capabilities, promote collaboration, and improve Alzheimer's disease management and patient outcomes. Deep Generative Models for Integrative Analysis of Alzheimer's Biomarkers explores the integration of deep generative models in disease diagnosis, biomarking, and prediction. It examines the use of tools like data analysis, natural language processing, and machine learning for effective Alzheimer’s research. This book covers topics such as data analysis, biomedicine, and machine learning, and is a useful resource for computer engineers, biologists, scientists, medical professionals, healthcare workers, academicians, and researchers.