Chemistry and Properties of Crosslinked Polymers

Chemistry and Properties of Crosslinked Polymers
Author :
Publisher : Elsevier
Total Pages : 596
Release :
ISBN-10 : 9780323139373
ISBN-13 : 032313937X
Rating : 4/5 (73 Downloads)

Synopsis Chemistry and Properties of Crosslinked Polymers by : Labana

Chemistry and Properties of Crosslinked Polymers provides a description of the structure property relationship, chemistry, and methods of characterization of crosslinked polymers. The book presents papers that discuss experimental techniques to study polymer network structure; deduction of information on network structure from theoretical considerations; interpenetrating polymer networks; crosslinked polymers for high temperature applications; a novel class of polyurethanes; crosslinking agents; and the influence of crosslinking agents on thermal and mechanical properties. The text will be of value to materials scientists and engineers, chemists, and researchers in the field of polymer science.

Handbook of Polymer Synthesis, Characterization, and Processing

Handbook of Polymer Synthesis, Characterization, and Processing
Author :
Publisher : John Wiley & Sons
Total Pages : 660
Release :
ISBN-10 : 9781118480779
ISBN-13 : 1118480775
Rating : 4/5 (79 Downloads)

Synopsis Handbook of Polymer Synthesis, Characterization, and Processing by : Enrique Saldivar-Guerra

Covering a broad range of polymer science topics, Handbook of Polymer Synthesis, Characterization, and Processing provides polymer industry professionals and researchers in polymer science and technology with a single, comprehensive handbook summarizing all aspects involved in the polymer production chain. The handbook focuses on industrially important polymers, analytical techniques, and formulation methods, with chapters covering step-growth, radical, and co-polymerization, crosslinking and grafting, reaction engineering, advanced technology applications, including conjugated, dendritic, and nanomaterial polymers and emulsions, and characterization methods, including spectroscopy, light scattering, and microscopy.

Encyclopedia of Polymeric Nanomaterials

Encyclopedia of Polymeric Nanomaterials
Author :
Publisher : Springer
Total Pages : 0
Release :
ISBN-10 : 3642296475
ISBN-13 : 9783642296475
Rating : 4/5 (75 Downloads)

Synopsis Encyclopedia of Polymeric Nanomaterials by : Shiro Kobayashi

Over the last few years, nanoscience and nanotechnology have been the focus of significant research attention, both from academia and industry. This sustained focus has in-turn driven the interdisciplinary field of material science research to the forefront of scientific inquiry through the creation and study of nanomaterials. Nanomaterials play an important role in the development of new materials as they can be used to influence and control physical properties and specific characteristics of other materials. Nanostructured materials that have been created include nanoparticles, nanocapsules, nanoporous materials, polymer multi-layers to name a few. These are increasingly used across applications as diverse as automotive, environment, energy, catalysis, biomedical, pharmaceutical, and polymer industries. The Encyclopedia of Polymeric Nanomaterials (EPN) intends to be a comprehensive reference work on this dynamic field studying nanomaterials within the context of the relationship between molecular structure and the properties of polymeric materials. Alphabetically organized as an encyclopedic Major Reference Work, EPN will cover the subject along multiple classification axes represented by name, source, properties, function, and structures or even processes, applications and usage. The underlying themes of the encyclopedia has been carefully identified to be based not just on material-based and function-based representation but also on structure- and process-based representation. The encyclopedia will have an exclusive focus on polymeric nanomaterials (for e.g., nanoceramics, nanocomposites, quantum dots, thin films) and will be a first of its kind work to have such an organization providing an overview to the concepts, practices and applications in the field. The encyclopedia intends to cover research and development work ranging from the fundamental mechanisms used for the fabrication of polymeric nanomaterials to their advanced application across multiple industries.

Amphiphilic Polymer Co-networks

Amphiphilic Polymer Co-networks
Author :
Publisher : Royal Society of Chemistry
Total Pages : 347
Release :
ISBN-10 : 9781839161346
ISBN-13 : 1839161345
Rating : 4/5 (46 Downloads)

Synopsis Amphiphilic Polymer Co-networks by : Costas S Patrickios

Amphiphilic polymer co-networks (APCNs) are a type of polymeric hydrogel, their hydrophobic polymer segments and hydrophilic components produce less aqueous swelling, giving better mechanical properties than conventional hydrogels. This new class of polymers is attracting increasing attention, resulting in further basic research on the system, as well as new applications. This book focuses on new developments in the field of APCNs, and is organised in four sections: synthesis, properties, applications and modelling. Co-network architectures included in the book chapters are mainly those deriving from hydrophobic macro-cross-linkers, representing the classical approach; however, more modern designs are also presented. Properties of interest discussed include aqueous swelling, thermophysical and mechanical properties, self-assembly, electrical actuation, and protein adsorption. Applications described in the book chapters include the use of co-networks as soft contact lenses, scaffolds for drug delivery and tissue engineering, matrices for heterogeneous biocatalysis, and membranes of controllable permeability. Finally, an important theory chapter on the modelling of the self-assembly of APCNs is also included. The book is suitable for graduate students and researchers interested in hydrogels, polymer networks, polymer chemistry, block copolymers, self-assembly and nanomaterials, as well as their applications in contact lenses, drug delivery, tissue engineering, membranes and biocatalysis.

The Chemistry of Polymers

The Chemistry of Polymers
Author :
Publisher : Royal Society of Chemistry
Total Pages : 204
Release :
ISBN-10 : 9781847552075
ISBN-13 : 1847552072
Rating : 4/5 (75 Downloads)

Synopsis The Chemistry of Polymers by : John W Nicholson

"The Chemistry of Polymers is a concise, easy-to-read, inexpensive introduction to the subject and fulfils the need for a polymer text written from an applied angle. It covers the basics of polymer chemistry while emphasising the practical applications and is essential for those who wish to acquire a rapid overview of the field. This book covers the basics of polymer synthesis, characterisation, reaction kinetics and materials science, as well as important specialised topics such as polymer degradation, polymers and pollution, and a variety of technological developments. Now in its second edition, the book has been revised and expanded to reflect recent developments in the subject. There are, for example, extensive updates to the ""Special topics in polymer chemistry"" section, with an additional section on optically active polymers, expanded sections on ionic and co-ordination polymerisations, and copolymerisation, and additional examples of new environmental legislation are outlined wherever appropriate."

Principles of Polymer Chemistry

Principles of Polymer Chemistry
Author :
Publisher : Cornell University Press
Total Pages : 696
Release :
ISBN-10 : 0801401348
ISBN-13 : 9780801401343
Rating : 4/5 (48 Downloads)

Synopsis Principles of Polymer Chemistry by : Paul J. Flory

Viscoelastic Properties of Polymers

Viscoelastic Properties of Polymers
Author :
Publisher : John Wiley & Sons
Total Pages : 676
Release :
ISBN-10 : 0471048941
ISBN-13 : 9780471048947
Rating : 4/5 (41 Downloads)

Synopsis Viscoelastic Properties of Polymers by : John D. Ferry

Viscoelastic behavior reflects the combined viscous and elastic responses, under mechanical stress, of materials which are intermediate between liquids and solids in character. Polymers the basic materials of the rubber and plastic industries and important to the textile, petroleum, automobile, paper, and pharmaceutical industries as well exhibit viscoelasticity to a pronounced degree. Their viscoelastic properties determine the mechanical performance of the final products of these industries, and also the success of processing methods at intermediate stages of production. Viscoelastic Properties of Polymers examines, in detail, the effects of the many variables on which the basic viscoelastic properties depend. These include temperature, pressure, and time; polymer chemical composition, molecular weight and weight distribution, branching and crystallinity; dilution with solvents or plasticizers; and mixture with other materials to form composite systems. With guidance by molecular theory, the dependence of viscoelastic properties on these variables can be simplified by introducing certain ancillary concepts such as the fractional free volume, the monomeric friction coefficient, and the spacing between entanglement loci, to provide a qualitative understanding and in many cases a quantitative prediction of how to achieve desired results. The phenomenological theory of viscoelasticity which permits interrelation of the results of different types of experiments is presented first, with many useful approximation procedures for calculations given. A wide variety of experimental methods is then described, with critical evaluation of their applicability to polymeric materials of different consistencies and in different regions of the time scale (or, for oscillating deformations, the frequency scale). A review of the present state of molecular theory follows, so that viscoelasticity can be related to the motions of flexible polymer molecules and their entanglements and network junctions. The dependence of viscoestic properties on temperature and pressure, and its descriptions using reduced variables, are discussed in detail. Several chapters are then devoted to the dependence of viscoelastic properties on chemical composition, molecular weight, presence of diluents, and other features, for several characteristic classes of polymer materials. Finally, a few examples are given to illustrate the many potential applications of these principles to practical problems in the processing and use of rubbers, plastics, and fibers, and in the control of vibration and noise. The third edition has been brought up to date to reflect the important developments, in a decade of exceptionally active research, which have led to a wider use of polymers, and a wider recognition of the importance and range of application of viscoelastic properties. Additional data have been incorporated, and the book s chapters on dilute solutions, theory of undiluted polymers, plateau and terminal zones, cross-linked polymers, and concentrated solutions have been extensively rewritten to take into account new theories and new experimental results. Technical managers and research workers in the wide range of industries in which polymers play an important role will find that the book provides basic information for practical applications, and graduate students in chemistry and engineering will find, in its illustrations with real data and real numbers, an accessible introduction to the principles of viscoelasticity.

Additives for Polyolefins

Additives for Polyolefins
Author :
Publisher : William Andrew
Total Pages : 295
Release :
ISBN-10 : 9780815520528
ISBN-13 : 0815520522
Rating : 4/5 (28 Downloads)

Synopsis Additives for Polyolefins by : Michael Tolinski

This book focuses on the polyolefin additives that are currently important in the plastics industry, alongside new additives of increasing interest, such as nanofillers and environmentally sustainable materials. As much as possible, each chapter emphasizes the performance of the additives in the polymer, and the value each relevant additive brings to polypropylene or polyethylene. Where possible, similar additives are compared by capability and relative cost. With major sections for each additive function, this book provides a highly practical guide for engineers and scientists creating and using polyolefin compounds, who will find in this book a wealth of detail and practical guidance. This unique resource will enable them to make practical decisions about the use of the various additives, fillers, and reinforcements specific to this family of materials. ABOUT THE AUTHOR Michael Tolinski is a freelance writer and a lecturer at the University of Michigan's College of Engineering. He is a frequent contributor to Plastics Engineering and Manufacturing Engineering. - Structured to make it easy for the reader to find solutions for specific property requirements - Contains a number of short case studies about companies that have used or developed a particular additive to achieve a desired result - Covers environmental resistance, mechanical property enhancement, appearance enhancement, processing aids, and other modifications of form and function

Structure—Property Relationships in Polymers

Structure—Property Relationships in Polymers
Author :
Publisher : Springer Science & Business Media
Total Pages : 234
Release :
ISBN-10 : 9781468447484
ISBN-13 : 1468447483
Rating : 4/5 (84 Downloads)

Synopsis Structure—Property Relationships in Polymers by : Charles E. Carraher Jr.

The first concern of scientists who are interested in synthetic polymers has always been, and still is: How are they synthesized? But right after this comes the question: What have I made, and for what is it good? This leads to the important topic of the structure-property relations to which this book is devoted. Polymers are very large and very complicated systems; their character ization has to begin with the chemical composition, configuration, and con formation of the individual molecule. The first chapter is devoted to this broad objective. The immediate physical consequences, discussed in the second chapter, form the basis for the physical nature of polymers: the supermolecular interactions and arrangements of the individual macromolecules. The third chapter deals with the important question: How are these chemical and physical structures experimentally determined? The existing methods for polymer characterization are enumerated and discussed in this chapter. The following chapters go into more detail. For most applications-textiles, films, molded or extruded objects of all kinds-the mechanical and the thermal behaviors of polymers are of pre ponderant importance, followed by optical and electric properties. Chapters 4 through 9 describe how such properties are rooted in and dependent on the chemical structure. More-detailed considerations are given to certain particularly important and critical properties such as the solubility and permeability of polymeric systems. Macromolecules are not always the final goal of the chemist-they may act as intermediates, reactants, or catalysts. This topic is presented in Chapters 10 and 11.

Biopolymer Electrolytes

Biopolymer Electrolytes
Author :
Publisher : Elsevier
Total Pages : 194
Release :
ISBN-10 : 9780128136119
ISBN-13 : 0128136111
Rating : 4/5 (19 Downloads)

Synopsis Biopolymer Electrolytes by : Sudhakar Y N

Biopolymer Electrolytes: Fundamentals and Applications in Energy Storage provides the core fundamentals and applications for polyelectrolytes and their properties with a focus on biopolymer electrolytes. Increasing global energy and environmental challenges demand clean and sustainable energy sources to support the modern society. One of the feasible technologies is to use green energy and green materials in devices. Biopolymer electrolytes are one such green material and, hence, have enormous application potential in devices such as electrochemical cells and fuel cells. - Features a stable of case studies throughout the book that underscore key concepts and applications - Provides the core fundamentals and applications for polyelectrolytes and their properties - Weaves the subject of biopolymer electrolytes across a broad range of disciplines, including chemistry, chemical engineering, materials science, environmental science, and pharmaceutical science