Building Intelligent Systems Utilizing Computer Vision Data Mining And Machine Learning
Download Building Intelligent Systems Utilizing Computer Vision Data Mining And Machine Learning full books in PDF, epub, and Kindle. Read online free Building Intelligent Systems Utilizing Computer Vision Data Mining And Machine Learning ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads.
Author |
: Phil Tian |
Publisher |
: |
Total Pages |
: 460 |
Release |
: 2013-05-21 |
ISBN-10 |
: 193405352X |
ISBN-13 |
: 9781934053522 |
Rating |
: 4/5 (2X Downloads) |
Synopsis Building Intelligent Systems: Utilizing Computer Vision, Data Mining, and Machine Learning by : Phil Tian
Consumers are now demanding and expecting more from technology. Building intelligence into our devices is a promising way to satisfy this demand by providing more personalized experiences. In Building Intelligent Systems the authors investigate how computer vision, machine learning, and data mining can be used together to build smarter devices and systems. Additionally, they explore some of the practical considerations of using artificial intelligence in the real world, tackling issues that are often overlooked in academic circles, such as performance optimization, benchmarking, robustness, and privacy.
Author |
: Nicu Sebe |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 253 |
Release |
: 2005-10-04 |
ISBN-10 |
: 9781402032752 |
ISBN-13 |
: 1402032757 |
Rating |
: 4/5 (52 Downloads) |
Synopsis Machine Learning in Computer Vision by : Nicu Sebe
The goal of this book is to address the use of several important machine learning techniques into computer vision applications. An innovative combination of computer vision and machine learning techniques has the promise of advancing the field of computer vision, which contributes to better understanding of complex real-world applications. The effective usage of machine learning technology in real-world computer vision problems requires understanding the domain of application, abstraction of a learning problem from a given computer vision task, and the selection of appropriate representations for the learnable (input) and learned (internal) entities of the system. In this book, we address all these important aspects from a new perspective: that the key element in the current computer revolution is the use of machine learning to capture the variations in visual appearance, rather than having the designer of the model accomplish this. As a bonus, models learned from large datasets are likely to be more robust and more realistic than the brittle all-design models.
Author |
: Ian H. Witten |
Publisher |
: Elsevier |
Total Pages |
: 665 |
Release |
: 2011-02-03 |
ISBN-10 |
: 9780080890364 |
ISBN-13 |
: 0080890369 |
Rating |
: 4/5 (64 Downloads) |
Synopsis Data Mining by : Ian H. Witten
Data Mining: Practical Machine Learning Tools and Techniques, Third Edition, offers a thorough grounding in machine learning concepts as well as practical advice on applying machine learning tools and techniques in real-world data mining situations. This highly anticipated third edition of the most acclaimed work on data mining and machine learning will teach you everything you need to know about preparing inputs, interpreting outputs, evaluating results, and the algorithmic methods at the heart of successful data mining. Thorough updates reflect the technical changes and modernizations that have taken place in the field since the last edition, including new material on Data Transformations, Ensemble Learning, Massive Data Sets, Multi-instance Learning, plus a new version of the popular Weka machine learning software developed by the authors. Witten, Frank, and Hall include both tried-and-true techniques of today as well as methods at the leading edge of contemporary research. The book is targeted at information systems practitioners, programmers, consultants, developers, information technology managers, specification writers, data analysts, data modelers, database R&D professionals, data warehouse engineers, data mining professionals. The book will also be useful for professors and students of upper-level undergraduate and graduate-level data mining and machine learning courses who want to incorporate data mining as part of their data management knowledge base and expertise. - Provides a thorough grounding in machine learning concepts as well as practical advice on applying the tools and techniques to your data mining projects - Offers concrete tips and techniques for performance improvement that work by transforming the input or output in machine learning methods - Includes downloadable Weka software toolkit, a collection of machine learning algorithms for data mining tasks—in an updated, interactive interface. Algorithms in toolkit cover: data pre-processing, classification, regression, clustering, association rules, visualization
Author |
: Ian Goodfellow |
Publisher |
: MIT Press |
Total Pages |
: 801 |
Release |
: 2016-11-10 |
ISBN-10 |
: 9780262337373 |
ISBN-13 |
: 0262337371 |
Rating |
: 4/5 (73 Downloads) |
Synopsis Deep Learning by : Ian Goodfellow
An introduction to a broad range of topics in deep learning, covering mathematical and conceptual background, deep learning techniques used in industry, and research perspectives. “Written by three experts in the field, Deep Learning is the only comprehensive book on the subject.” —Elon Musk, cochair of OpenAI; cofounder and CEO of Tesla and SpaceX Deep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning. The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models. Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors.
Author |
: Yuxi (Hayden) Liu |
Publisher |
: Packt Publishing Ltd |
Total Pages |
: 527 |
Release |
: 2020-10-30 |
ISBN-10 |
: 9781800203860 |
ISBN-13 |
: 1800203861 |
Rating |
: 4/5 (60 Downloads) |
Synopsis Python Machine Learning By Example by : Yuxi (Hayden) Liu
A comprehensive guide to get you up to speed with the latest developments of practical machine learning with Python and upgrade your understanding of machine learning (ML) algorithms and techniques Key FeaturesDive into machine learning algorithms to solve the complex challenges faced by data scientists todayExplore cutting edge content reflecting deep learning and reinforcement learning developmentsUse updated Python libraries such as TensorFlow, PyTorch, and scikit-learn to track machine learning projects end-to-endBook Description Python Machine Learning By Example, Third Edition serves as a comprehensive gateway into the world of machine learning (ML). With six new chapters, on topics including movie recommendation engine development with Naïve Bayes, recognizing faces with support vector machine, predicting stock prices with artificial neural networks, categorizing images of clothing with convolutional neural networks, predicting with sequences using recurring neural networks, and leveraging reinforcement learning for making decisions, the book has been considerably updated for the latest enterprise requirements. At the same time, this book provides actionable insights on the key fundamentals of ML with Python programming. Hayden applies his expertise to demonstrate implementations of algorithms in Python, both from scratch and with libraries. Each chapter walks through an industry-adopted application. With the help of realistic examples, you will gain an understanding of the mechanics of ML techniques in areas such as exploratory data analysis, feature engineering, classification, regression, clustering, and NLP. By the end of this ML Python book, you will have gained a broad picture of the ML ecosystem and will be well-versed in the best practices of applying ML techniques to solve problems. What you will learnUnderstand the important concepts in ML and data scienceUse Python to explore the world of data mining and analyticsScale up model training using varied data complexities with Apache SparkDelve deep into text analysis and NLP using Python libraries such NLTK and GensimSelect and build an ML model and evaluate and optimize its performanceImplement ML algorithms from scratch in Python, TensorFlow 2, PyTorch, and scikit-learnWho this book is for If you’re a machine learning enthusiast, data analyst, or data engineer highly passionate about machine learning and want to begin working on machine learning assignments, this book is for you. Prior knowledge of Python coding is assumed and basic familiarity with statistical concepts will be beneficial, although this is not necessary.
Author |
: Abdulhamit Subasi |
Publisher |
: Academic Press |
Total Pages |
: 536 |
Release |
: 2020-06-05 |
ISBN-10 |
: 9780128213803 |
ISBN-13 |
: 0128213809 |
Rating |
: 4/5 (03 Downloads) |
Synopsis Practical Machine Learning for Data Analysis Using Python by : Abdulhamit Subasi
Practical Machine Learning for Data Analysis Using Python is a problem solver's guide for creating real-world intelligent systems. It provides a comprehensive approach with concepts, practices, hands-on examples, and sample code. The book teaches readers the vital skills required to understand and solve different problems with machine learning. It teaches machine learning techniques necessary to become a successful practitioner, through the presentation of real-world case studies in Python machine learning ecosystems. The book also focuses on building a foundation of machine learning knowledge to solve different real-world case studies across various fields, including biomedical signal analysis, healthcare, security, economics, and finance. Moreover, it covers a wide range of machine learning models, including regression, classification, and forecasting. The goal of the book is to help a broad range of readers, including IT professionals, analysts, developers, data scientists, engineers, and graduate students, to solve their own real-world problems. - Offers a comprehensive overview of the application of machine learning tools in data analysis across a wide range of subject areas - Teaches readers how to apply machine learning techniques to biomedical signals, financial data, and healthcare data - Explores important classification and regression algorithms as well as other machine learning techniques - Explains how to use Python to handle data extraction, manipulation, and exploration techniques, as well as how to visualize data spread across multiple dimensions and extract useful features
Author |
: Christopher M. Bishop |
Publisher |
: Springer |
Total Pages |
: 0 |
Release |
: 2016-08-23 |
ISBN-10 |
: 1493938436 |
ISBN-13 |
: 9781493938438 |
Rating |
: 4/5 (36 Downloads) |
Synopsis Pattern Recognition and Machine Learning by : Christopher M. Bishop
This is the first textbook on pattern recognition to present the Bayesian viewpoint. The book presents approximate inference algorithms that permit fast approximate answers in situations where exact answers are not feasible. It uses graphical models to describe probability distributions when no other books apply graphical models to machine learning. No previous knowledge of pattern recognition or machine learning concepts is assumed. Familiarity with multivariate calculus and basic linear algebra is required, and some experience in the use of probabilities would be helpful though not essential as the book includes a self-contained introduction to basic probability theory.
Author |
: Ian H. Witten |
Publisher |
: Morgan Kaufmann |
Total Pages |
: 655 |
Release |
: 2016-10-01 |
ISBN-10 |
: 9780128043578 |
ISBN-13 |
: 0128043571 |
Rating |
: 4/5 (78 Downloads) |
Synopsis Data Mining by : Ian H. Witten
Data Mining: Practical Machine Learning Tools and Techniques, Fourth Edition, offers a thorough grounding in machine learning concepts, along with practical advice on applying these tools and techniques in real-world data mining situations. This highly anticipated fourth edition of the most acclaimed work on data mining and machine learning teaches readers everything they need to know to get going, from preparing inputs, interpreting outputs, evaluating results, to the algorithmic methods at the heart of successful data mining approaches. Extensive updates reflect the technical changes and modernizations that have taken place in the field since the last edition, including substantial new chapters on probabilistic methods and on deep learning. Accompanying the book is a new version of the popular WEKA machine learning software from the University of Waikato. Authors Witten, Frank, Hall, and Pal include today's techniques coupled with the methods at the leading edge of contemporary research. Please visit the book companion website at https://www.cs.waikato.ac.nz/~ml/weka/book.html. It contains - Powerpoint slides for Chapters 1-12. This is a very comprehensive teaching resource, with many PPT slides covering each chapter of the book - Online Appendix on the Weka workbench; again a very comprehensive learning aid for the open source software that goes with the book - Table of contents, highlighting the many new sections in the 4th edition, along with reviews of the 1st edition, errata, etc. - Provides a thorough grounding in machine learning concepts, as well as practical advice on applying the tools and techniques to data mining projects - Presents concrete tips and techniques for performance improvement that work by transforming the input or output in machine learning methods - Includes a downloadable WEKA software toolkit, a comprehensive collection of machine learning algorithms for data mining tasks-in an easy-to-use interactive interface - Includes open-access online courses that introduce practical applications of the material in the book
Author |
: K. Gayathri Devi |
Publisher |
: CRC Press |
Total Pages |
: 267 |
Release |
: 2020-10-07 |
ISBN-10 |
: 9781000179514 |
ISBN-13 |
: 1000179516 |
Rating |
: 4/5 (14 Downloads) |
Synopsis Artificial Intelligence Trends for Data Analytics Using Machine Learning and Deep Learning Approaches by : K. Gayathri Devi
Artificial Intelligence (AI), when incorporated with machine learning and deep learning algorithms, has a wide variety of applications today. This book focuses on the implementation of various elementary and advanced approaches in AI that can be used in various domains to solve real-time decision-making problems. The book focuses on concepts and techniques used to run tasks in an automated manner. It discusses computational intelligence in the detection and diagnosis of clinical and biomedical images, covers the automation of a system through machine learning and deep learning approaches, presents data analytics and mining for decision-support applications, and includes case-based reasoning, natural language processing, computer vision, and AI approaches in real-time applications. Academic scientists, researchers, and students in the various domains of computer science engineering, electronics and communication engineering, and information technology, as well as industrial engineers, biomedical engineers, and management, will find this book useful. By the end of this book, you will understand the fundamentals of AI. Various case studies will develop your adaptive thinking to solve real-time AI problems. Features Includes AI-based decision-making approaches Discusses computational intelligence in the detection and diagnosis of clinical and biomedical images Covers automation of systems through machine learning and deep learning approaches and its implications to the real world Presents data analytics and mining for decision-support applications Offers case-based reasoning
Author |
: Sumeet Dua |
Publisher |
: CRC Press |
Total Pages |
: 248 |
Release |
: 2016-04-19 |
ISBN-10 |
: 9781439839430 |
ISBN-13 |
: 1439839433 |
Rating |
: 4/5 (30 Downloads) |
Synopsis Data Mining and Machine Learning in Cybersecurity by : Sumeet Dua
With the rapid advancement of information discovery techniques, machine learning and data mining continue to play a significant role in cybersecurity. Although several conferences, workshops, and journals focus on the fragmented research topics in this area, there has been no single interdisciplinary resource on past and current works and possible