Biomaterials, Medical Devices, and Tissue Engineering
Author | : Frederick H. Silver |
Publisher | : |
Total Pages | : 0 |
Release | : 1994 |
ISBN-10 | : OCLC:28749249 |
ISBN-13 | : |
Rating | : 4/5 (49 Downloads) |
Read and Download All BOOK in PDF
Download Biomaterials Medical Devices And Tissue Engineering An Integrated Approach full books in PDF, epub, and Kindle. Read online free Biomaterials Medical Devices And Tissue Engineering An Integrated Approach ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads.
Author | : Frederick H. Silver |
Publisher | : |
Total Pages | : 0 |
Release | : 1994 |
ISBN-10 | : OCLC:28749249 |
ISBN-13 | : |
Rating | : 4/5 (49 Downloads) |
Author | : Frederick Silver |
Publisher | : Springer Science & Business Media |
Total Pages | : 318 |
Release | : 1993-11-30 |
ISBN-10 | : 0412412608 |
ISBN-13 | : 9780412412608 |
Rating | : 4/5 (08 Downloads) |
are then selected and must meet the general 'biocompatibility' require ments. Prototypes are built and tested to include biocompatibility evalua tions based on ASTM standard procedures. The device is validated for sterility and freedom from pyrogens before it can be tested on animals or humans. Medical devices are classified as class I, II or III depending on their invasiveness. Class I devices can be marketed by submitting notification to the FDA. Class II and III devices require either that they show equivalence to a device marketed prior to 1976 or that they receive pre-marketing approval. The time from device conception to FDA approval can range from months (class I device) to in excess of ten years (class III device). Therefore, much planning is necessary to pick the best regulatory approach. 2. Wound Dressings and Skin Replacement 2.1 Introduction Wounds to the skin are encountered every day. Minor skin wounds cause some pain, but these wounds will heal by themselves in time. Even though many minor wounds heal effectively without scarring in the absence of treatment, they heal more rapidly if they are kept clean and moist. Devices such as Band-Aids are used to assist in wound healing. For deeper wounds, a variety of wound dressings have been developed including cell cultured artificial skin. These materials are intended to promote healing of skin damaged or removed as a result of skin grafting, ulceration, burns, cancer excision or mechanical trauma.
Author | : F.H. Silver |
Publisher | : Springer Science & Business Media |
Total Pages | : 310 |
Release | : 2012-12-06 |
ISBN-10 | : 9789401107358 |
ISBN-13 | : 9401107351 |
Rating | : 4/5 (58 Downloads) |
are then selected and must meet the general 'biocompatibility' require ments. Prototypes are built and tested to include biocompatibility evalua tions based on ASTM standard procedures. The device is validated for sterility and freedom from pyrogens before it can be tested on animals or humans. Medical devices are classified as class I, II or III depending on their invasiveness. Class I devices can be marketed by submitting notification to the FDA. Class II and III devices require either that they show equivalence to a device marketed prior to 1976 or that they receive pre-marketing approval. The time from device conception to FDA approval can range from months (class I device) to in excess of ten years (class III device). Therefore, much planning is necessary to pick the best regulatory approach. 2. Wound Dressings and Skin Replacement 2.1 Introduction Wounds to the skin are encountered every day. Minor skin wounds cause some pain, but these wounds will heal by themselves in time. Even though many minor wounds heal effectively without scarring in the absence of treatment, they heal more rapidly if they are kept clean and moist. Devices such as Band-Aids are used to assist in wound healing. For deeper wounds, a variety of wound dressings have been developed including cell cultured artificial skin. These materials are intended to promote healing of skin damaged or removed as a result of skin grafting, ulceration, burns, cancer excision or mechanical trauma.
Author | : Yitzhak Rosen |
Publisher | : CRC Press |
Total Pages | : 330 |
Release | : 2012-06-06 |
ISBN-10 | : 9781439804056 |
ISBN-13 | : 1439804052 |
Rating | : 4/5 (56 Downloads) |
"This book is essential when designing, developing and studying biomedical materials. provides an excellent review-from a patient, disease, and even genetic point of view-of materials engineering for the biomedical field. This well presented book strongly insists on how the materials can influence patients' needs, the ultimate drive for biomedic
Author | : Lei Yang |
Publisher | : Academic Press |
Total Pages | : 364 |
Release | : 2018-11-30 |
ISBN-10 | : 9780128134788 |
ISBN-13 | : 012813478X |
Rating | : 4/5 (88 Downloads) |
Biomaterials in Translational Medicine delivers timely and detailed information on the latest advances in biomaterials and their role and impact in translational medicine. Key topics addressed include the properties and functions of these materials and how they might be applied for clinical diagnosis and treatment. Particular emphasis is placed on basic fundamentals, biomaterial formulations, design principles, fabrication techniques and transitioning bench-to-bed clinical applications. The book is an essential reference resource for researchers, clinicians, materials scientists, engineers and anyone involved in the future development of innovative biomaterials that drive advancement in translational medicine. - Systematically introduces the fundamental principles, rationales and methodologies of creating or improving biomaterials in the context of translational medicine - Includes the translational or commercialization status of these new biomaterials - Provides the reader with enough background knowledge for a fundamental grip of the difficulties and technicalities of using biomaterial translational medicine - Directs the reader on how to find other up-to-date sources (i.e. peer reviewed journals) in the field of translational medicine and biomaterials
Author | : Mehdi Razavi |
Publisher | : Bentham Science Publishers |
Total Pages | : 308 |
Release | : 2017-10-03 |
ISBN-10 | : 9781681085364 |
ISBN-13 | : 1681085364 |
Rating | : 4/5 (64 Downloads) |
This volume reviews the published knowledge about bioactive composites, protein scaffolds and hydrogels. Chapters also detail the production parameters and clarify the evaluation protocol for analysis or testing and scaffolding biomaterials. The volume concludes with a summary of applications of porous scaffold in medicine. Each chapter links basic scientific and engineering concepts to practical applications for the benefit of the reader. The text offers a wealth of information that will be of use to all students, bioengineers, materials scientists, chemists, physicians and surgeons concerned with the properties, performance, and the application of tissue engineering scaffolds in clinical settings.
Author | : Ferdyansyah Mahyudin |
Publisher | : Springer |
Total Pages | : 249 |
Release | : 2016-02-26 |
ISBN-10 | : 9783319148458 |
ISBN-13 | : 3319148451 |
Rating | : 4/5 (58 Downloads) |
This book presents an introduction to biomaterials with the focus on the current development and future direction of biomaterials and medical devices research and development in Indonesia. It is the first biomaterials book written by selected academic and clinical experts experts on biomaterials and medical devices from various institutions and industries in Indonesia. It serves as a reference source for researchers starting new projects, for companies developing and marketing products and for governments setting new policies. Chapter one covers the fundamentals of biomaterials, types of biomaterials, their structures and properties and the relationship between them. Chapter two discusses unconventional processing of biomaterials including nano-hybrid organic-inorganic biomaterials. Chapter three addresses biocompatibility issues including in vitro cytotoxicity, genotoxicity, in vitro cell models, biocompatibility data and its related failure. Chapter four describes degradable biomaterial for medical implants, which include biodegradable polymers, biodegradable metals, degradation assessment techniques and future directions. Chapter five focuses on animal models for biomaterial research, ethics, care and use, implantation study and monitoring and studies on medical implants in animals in Indonesia. Chapter six covers biomimetic bioceramics, natural-based biocomposites and the latest research on natural-based biomaterials in Indonesia. Chapter seven describes recent advances in natural biomaterial from human and animal tissue, its processing and applications. Chapter eight discusses orthopedic applications of biomaterials focusing on most common problems in Indonesia, and surgical intervention and implants. Chapter nine describes biomaterials in dentistry and their development in Indonesia.
Author | : Shakeel Ahmed |
Publisher | : Elsevier |
Total Pages | : 672 |
Release | : 2021-06-09 |
ISBN-10 | : 9780128212806 |
ISBN-13 | : 0128212802 |
Rating | : 4/5 (06 Downloads) |
Bionanocomposites in Tissue Engineering and Regenerative Medicine explores novel uses of these in tissue engineering and regenerative medicine. This book offers an interdisplinary approach, combining chemical, biomedical engineering, materials science and pharmacological aspects of the characterization, synthesis and application of bionanocomposites. Chapters cover a broad selection of bionanocomposites including chitosan, alginate and more, which are utilized in tissue engineering, wound healing, bone repair, drug formulation, cancer therapy, drug delivery, cartilage regeneration and dental implants. Additional sections of Bionanocomposites in Tissue Engineering and Regenerative Medicine discuss, in detail, the safety aspects and circular economy of bionanocomposites - offering an insight into the commercial and industrial aspects of these important materials. Bionanocomposites in Tissue Engineering and Regenerative Medicine will prove a highly useful text for for those in the fields of biomedical engineering, chemistry, pharmaceutics and materials science, both in academia and industrial R&D groups. Each bionanocomposite type is covered individually, providing specific and detailed information for each material Covers a range of tissue engineering and regenerative medicine applications, from dental and bone engineering to cancer therapy Offers an integrated approach, with contributions from authors across a variety of related disciplines, including biomedical engineering, chemistry and materials science
Author | : Gary Wnek |
Publisher | : CRC Press |
Total Pages | : 3145 |
Release | : 2008-05-28 |
ISBN-10 | : 9781498761437 |
ISBN-13 | : 1498761437 |
Rating | : 4/5 (37 Downloads) |
Written by more than 400 subject experts representing diverse academic and applied domains, this multidisciplinary resource surveys the vanguard of biomaterials and biomedical engineering technologies utilizing biomaterials that lead to quality-of-life improvements. Building on traditional engineering principles, it serves to bridge advances in materials science, life sciences, nanotechnology, and cell biology to innovations in solving medical problems with applications in tissue engineering, prosthetics, drug delivery, biosensors, and medical devices. In nearly 300 entries, this four-volume Encyclopedia of Biomaterials and Biomedical Engineering, Second Edition, covers: essential topics integral to tissue engineering research: bioreactors, scaffolding materials and fabrication, tissue mechanics, cellular interaction, and development of major tissues and organs being attempted by researchers worldwide; artificial lungs and muscles, bio-artificial livers, and corneal, dental, inner ear, and total hip implants; tissue engineering of blood vessels, heart valves, ligaments, microvascular networks, skeletal muscle, and skin; bone remodeling, bone cement, and bioabsorbable bone plates and screws; controlled drug delivery, insulin delivery, and transdermal and ocular implant-based drug delivery; endovascular stent grafts, vascular grafts, and xenografts; 3-D medical imaging, electrical impedance imaging, and intravascular ultrasound; biomedical, protein adsorption, and in vivo cardiovascular modeling; polymer foams, biofunctional and conductive polymers, and electroactive polymeric materials; blood–material interactions, the bone–implant interface, host reactions, and foreign body responses and much more.
Author | : L Hench |
Publisher | : Elsevier |
Total Pages | : 298 |
Release | : 2005-09-27 |
ISBN-10 | : 9781845690861 |
ISBN-13 | : 1845690869 |
Rating | : 4/5 (61 Downloads) |
Maintaining quality of life in an ageing population is one of the great challenges of the 21st Century. This book summarises how this challenge is being met by multi-disciplinary developments of specialty biomaterials, devices, artificial organs and in-vitro growth of human cells as tissue engineered constructs.Biomaterials, Artificial Organs and Tissue Engineering is intended for use as a textbook in a one semester course for upper level BS, MS and Meng students. The 25 chapters are organized in five parts: Part one provides an introduction to living and man-made materials for the non-specialist; Part two is an overview of clinical applications of various biomaterials and devices; Part three summarises the bioengineering principles, materials and designs used in artificial organs; Part four presents the concepts, cell techniques, scaffold materials and applications of tissue engineering; Part five provides an overview of the complex socio-economic factors involved in technology based healthcare, including regulatory controls, technology transfer processes and ethical issues. - Comprehensive introduction to living and man-made materials - Looks at clinical applications of various biomaterials and devices - Bioengineering principles, materials and designs used in artificial organs are summarised