Big Data Analytics For Cyber Physical Systems
Download Big Data Analytics For Cyber Physical Systems full books in PDF, epub, and Kindle. Read online free Big Data Analytics For Cyber Physical Systems ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads.
Author |
: Guido Dartmann |
Publisher |
: Elsevier |
Total Pages |
: 398 |
Release |
: 2019-07-15 |
ISBN-10 |
: 9780128166468 |
ISBN-13 |
: 0128166460 |
Rating |
: 4/5 (68 Downloads) |
Synopsis Big Data Analytics for Cyber-Physical Systems by : Guido Dartmann
Big Data Analytics in Cyber-Physical Systems: Machine Learning for the Internet of Things examines sensor signal processing, IoT gateways, optimization and decision-making, intelligent mobility, and implementation of machine learning algorithms in embedded systems. This book focuses on the interaction between IoT technology and the mathematical tools used to evaluate the extracted data of those systems. Each chapter provides the reader with a broad list of data analytics and machine learning methods for multiple IoT applications. Additionally, this volume addresses the educational transfer needed to incorporate these technologies into our society by examining new platforms for IoT in schools, new courses and concepts for universities and adult education on IoT and data science. - Bridges the gap between IoT, CPS, and mathematical modelling - Features numerous use cases that discuss how concepts are applied in different domains and applications - Provides "best practices", "winning stories" and "real-world examples" to complement innovation - Includes highlights of mathematical foundations of signal processing and machine learning in CPS and IoT
Author |
: Yassine Maleh |
Publisher |
: Springer Nature |
Total Pages |
: 539 |
Release |
: 2020-12-14 |
ISBN-10 |
: 9783030570248 |
ISBN-13 |
: 303057024X |
Rating |
: 4/5 (48 Downloads) |
Synopsis Machine Intelligence and Big Data Analytics for Cybersecurity Applications by : Yassine Maleh
This book presents the latest advances in machine intelligence and big data analytics to improve early warning of cyber-attacks, for cybersecurity intrusion detection and monitoring, and malware analysis. Cyber-attacks have posed real and wide-ranging threats for the information society. Detecting cyber-attacks becomes a challenge, not only because of the sophistication of attacks but also because of the large scale and complex nature of today’s IT infrastructures. It discusses novel trends and achievements in machine intelligence and their role in the development of secure systems and identifies open and future research issues related to the application of machine intelligence in the cybersecurity field. Bridging an important gap between machine intelligence, big data, and cybersecurity communities, it aspires to provide a relevant reference for students, researchers, engineers, and professionals working in this area or those interested in grasping its diverse facets and exploring the latest advances on machine intelligence and big data analytics for cybersecurity applications.
Author |
: Houbing Herbert Song |
Publisher |
: Morgan Kaufmann |
Total Pages |
: 516 |
Release |
: 2016-08-27 |
ISBN-10 |
: 9780128038741 |
ISBN-13 |
: 0128038748 |
Rating |
: 4/5 (41 Downloads) |
Synopsis Cyber-Physical Systems by : Houbing Herbert Song
Cyber-Physical Systems: Foundations, Principles and Applications explores the core system science perspective needed to design and build complex cyber-physical systems. Using Systems Science's underlying theories, such as probability theory, decision theory, game theory, organizational sociology, behavioral economics, and cognitive psychology, the book addresses foundational issues central across CPS applications, including System Design -- How to design CPS to be safe, secure, and resilient in rapidly evolving environments, System Verification -- How to develop effective metrics and methods to verify and certify large and complex CPS, Real-time Control and Adaptation -- How to achieve real-time dynamic control and behavior adaptation in a diverse environments, such as clouds and in network-challenged spaces, Manufacturing -- How to harness communication, computation, and control for developing new products, reducing product concepts to realizable designs, and producing integrated software-hardware systems at a pace far exceeding today's timeline. The book is part of the Intelligent Data-Centric Systems: Sensor-Collected Intelligence series edited by Fatos Xhafa, Technical University of Catalonia. Indexing: The books of this series are submitted to EI-Compendex and SCOPUS - Includes in-depth coverage of the latest models and theories that unify perspectives, expressing the interacting dynamics of the computational and physical components of a system in a dynamic environment - Focuses on new design, analysis, and verification tools that embody the scientific principles of CPS and incorporate measurement, dynamics, and control - Covers applications in numerous sectors, including agriculture, energy, transportation, building design and automation, healthcare, and manufacturing
Author |
: Shiyan Hu |
Publisher |
: Springer Nature |
Total Pages |
: 273 |
Release |
: 2020-06-25 |
ISBN-10 |
: 9783030434946 |
ISBN-13 |
: 303043494X |
Rating |
: 4/5 (46 Downloads) |
Synopsis Big Data Analytics for Cyber-Physical Systems by : Shiyan Hu
This book highlights research and survey articles dedicated to big data techniques for cyber-physical system (CPS), which addresses the close interactions and feedback controls between cyber components and physical components. The book first discusses some fundamental big data problems and solutions in large scale distributed CPSs. The book then addresses the design and control challenges in multiple CPS domains such as vehicular system, smart city, smart building, and digital microfluidic biochips. This book also presents the recent advances and trends in the maritime simulation system and the flood defence system.
Author |
: Mundada, Monica R. |
Publisher |
: IGI Global |
Total Pages |
: 293 |
Release |
: 2021-12-17 |
ISBN-10 |
: 9781799881636 |
ISBN-13 |
: 1799881636 |
Rating |
: 4/5 (36 Downloads) |
Synopsis Deep Learning Applications for Cyber-Physical Systems by : Mundada, Monica R.
Big data generates around us constantly from daily business, custom use, engineering, and science activities. Sensory data is collected from the internet of things (IoT) and cyber-physical systems (CPS). Merely storing such a massive amount of data is meaningless, as the key point is to identify, locate, and extract valuable knowledge from big data to forecast and support services. Such extracted valuable knowledge is usually referred to as smart data. It is vital to providing suitable decisions in business, science, and engineering applications. Deep Learning Applications for Cyber-Physical Systems provides researchers a platform to present state-of-the-art innovations, research, and designs while implementing methodological and algorithmic solutions to data processing problems and designing and analyzing evolving trends in health informatics and computer-aided diagnosis in deep learning techniques in context with cyber physical systems. Covering topics such as smart medical systems, intrusion detection systems, and predictive analytics, this text is essential for computer scientists, engineers, practitioners, researchers, students, and academicians, especially those interested in the areas of internet of things, machine learning, deep learning, and cyber-physical systems.
Author |
: Mohammed Atiquzzaman |
Publisher |
: Springer Nature |
Total Pages |
: 1314 |
Release |
: 2021-12-09 |
ISBN-10 |
: 9789811674662 |
ISBN-13 |
: 9811674663 |
Rating |
: 4/5 (62 Downloads) |
Synopsis 2021 International Conference on Big Data Analytics for Cyber-Physical System in Smart City by : Mohammed Atiquzzaman
This book gathers a selection of peer-reviewed papers presented at the third Big Data Analytics for Cyber-Physical System in Smart City (BDCPS 2021) conference, held in Shanghai, China, on Nov. 27, 2021. The contributions, prepared by an international team of scientists and engineers, cover the latest advances made in the field of machine learning, and big data analytics methods and approaches for the data-driven co-design of communication, computing, and control for smart cities. Given its scope, it offers a valuable resource for all researchers and professionals interested in big data, smart cities, and cyber-physical systems.
Author |
: Mohammed Atiquzzaman |
Publisher |
: Springer Nature |
Total Pages |
: 2049 |
Release |
: 2020-01-11 |
ISBN-10 |
: 9789811525681 |
ISBN-13 |
: 9811525684 |
Rating |
: 4/5 (81 Downloads) |
Synopsis Big Data Analytics for Cyber-Physical System in Smart City by : Mohammed Atiquzzaman
This book gathers a selection of peer-reviewed papers presented at the first Big Data Analytics for Cyber-Physical System in Smart City (BDCPS 2019) conference, held in Shengyang, China, on 28–29 December 2019. The contributions, prepared by an international team of scientists and engineers, cover the latest advances made in the field of machine learning, and big data analytics methods and approaches for the data-driven co-design of communication, computing, and control for smart cities. Given its scope, it offers a valuable resource for all researchers and professionals interested in big data, smart cities, and cyber-physical systems.
Author |
: Gaddadevara Matt Siddesh |
Publisher |
: CRC Press |
Total Pages |
: 623 |
Release |
: 2015-12-01 |
ISBN-10 |
: 9781482259773 |
ISBN-13 |
: 148225977X |
Rating |
: 4/5 (73 Downloads) |
Synopsis Cyber-Physical Systems by : Gaddadevara Matt Siddesh
In cyber-physical systems (CPS), sensors and embedded systems are networked together to monitor and manage a range of physical processes through a continuous feedback system. This allows distributed computing using wireless devices. Cyber-Physical Systems-A Computational Perspective examines various developments of CPS that are impacting our daily
Author |
: Onur Savas |
Publisher |
: CRC Press |
Total Pages |
: 452 |
Release |
: 2017-09-18 |
ISBN-10 |
: 9781351650410 |
ISBN-13 |
: 1351650416 |
Rating |
: 4/5 (10 Downloads) |
Synopsis Big Data Analytics in Cybersecurity by : Onur Savas
Big data is presenting challenges to cybersecurity. For an example, the Internet of Things (IoT) will reportedly soon generate a staggering 400 zettabytes (ZB) of data a year. Self-driving cars are predicted to churn out 4000 GB of data per hour of driving. Big data analytics, as an emerging analytical technology, offers the capability to collect, store, process, and visualize these vast amounts of data. Big Data Analytics in Cybersecurity examines security challenges surrounding big data and provides actionable insights that can be used to improve the current practices of network operators and administrators. Applying big data analytics in cybersecurity is critical. By exploiting data from the networks and computers, analysts can discover useful network information from data. Decision makers can make more informative decisions by using this analysis, including what actions need to be performed, and improvement recommendations to policies, guidelines, procedures, tools, and other aspects of the network processes. Bringing together experts from academia, government laboratories, and industry, the book provides insight to both new and more experienced security professionals, as well as data analytics professionals who have varying levels of cybersecurity expertise. It covers a wide range of topics in cybersecurity, which include: Network forensics Threat analysis Vulnerability assessment Visualization Cyber training. In addition, emerging security domains such as the IoT, cloud computing, fog computing, mobile computing, and cyber-social networks are examined. The book first focuses on how big data analytics can be used in different aspects of cybersecurity including network forensics, root-cause analysis, and security training. Next it discusses big data challenges and solutions in such emerging cybersecurity domains as fog computing, IoT, and mobile app security. The book concludes by presenting the tools and datasets for future cybersecurity research.
Author |
: Jürgen Beyerer |
Publisher |
: Springer |
Total Pages |
: 144 |
Release |
: 2018-12-17 |
ISBN-10 |
: 9783662584859 |
ISBN-13 |
: 3662584859 |
Rating |
: 4/5 (59 Downloads) |
Synopsis Machine Learning for Cyber Physical Systems by : Jürgen Beyerer
This Open Access proceedings presents new approaches to Machine Learning for Cyber Physical Systems, experiences and visions. It contains some selected papers from the international Conference ML4CPS – Machine Learning for Cyber Physical Systems, which was held in Karlsruhe, October 23-24, 2018. Cyber Physical Systems are characterized by their ability to adapt and to learn: They analyze their environment and, based on observations, they learn patterns, correlations and predictive models. Typical applications are condition monitoring, predictive maintenance, image processing and diagnosis. Machine Learning is the key technology for these developments.