Bayesian Bounds for Parameter Estimation and Nonlinear Filtering/Tracking

Bayesian Bounds for Parameter Estimation and Nonlinear Filtering/Tracking
Author :
Publisher : Wiley-IEEE Press
Total Pages : 951
Release :
ISBN-10 : 0470120959
ISBN-13 : 9780470120958
Rating : 4/5 (59 Downloads)

Synopsis Bayesian Bounds for Parameter Estimation and Nonlinear Filtering/Tracking by : Harry L. Van Trees

The first comprehensive development of Bayesian Bounds for parameter estimation and nonlinear filtering/tracking Bayesian estimation plays a central role in many signal processing problems encountered in radar, sonar, communications, seismology, and medical diagnosis. There are often highly nonlinear problems for which analytic evaluation of the exact performance is intractable. A widely used technique is to find bounds on the performance of any estimator and compare the performance of various estimators to these bounds. This book provides a comprehensive overview of the state of the art in Bayesian Bounds. It addresses two related problems: the estimation of multiple parameters based on noisy measurements and the estimation of random processes, either continuous or discrete, based on noisy measurements. An extensive introductory chapter provides an overview of Bayesian estimation and the interrelationship and applicability of the various Bayesian Bounds for both static parameters and random processes. It provides the context for the collection of papers that are included. This book will serve as a comprehensive reference for engineers and statisticians interested in both theory and application. It is also suitable as a text for a graduate seminar or as a supplementary reference for an estimation theory course.

Bayesian Filtering and Smoothing

Bayesian Filtering and Smoothing
Author :
Publisher : Cambridge University Press
Total Pages : 438
Release :
ISBN-10 : 9781108912303
ISBN-13 : 1108912303
Rating : 4/5 (03 Downloads)

Synopsis Bayesian Filtering and Smoothing by : Simo Särkkä

Now in its second edition, this accessible text presents a unified Bayesian treatment of state-of-the-art filtering, smoothing, and parameter estimation algorithms for non-linear state space models. The book focuses on discrete-time state space models and carefully introduces fundamental aspects related to optimal filtering and smoothing. In particular, it covers a range of efficient non-linear Gaussian filtering and smoothing algorithms, as well as Monte Carlo-based algorithms. This updated edition features new chapters on constructing state space models of practical systems, the discretization of continuous-time state space models, Gaussian filtering by enabling approximations, posterior linearization filtering, and the corresponding smoothers. Coverage of key topics is expanded, including extended Kalman filtering and smoothing, and parameter estimation. The book's practical, algorithmic approach assumes only modest mathematical prerequisites, suitable for graduate and advanced undergraduate students. Many examples are included, with Matlab and Python code available online, enabling readers to implement algorithms in their own projects.

Nonlinear Filters

Nonlinear Filters
Author :
Publisher : John Wiley & Sons
Total Pages : 308
Release :
ISBN-10 : 9781118835814
ISBN-13 : 1118835816
Rating : 4/5 (14 Downloads)

Synopsis Nonlinear Filters by : Peyman Setoodeh

NONLINEAR FILTERS Discover the utility of using deep learning and (deep) reinforcement learning in deriving filtering algorithms with this insightful and powerful new resource Nonlinear Filters: Theory and Applications delivers an insightful view on state and parameter estimation by merging ideas from control theory, statistical signal processing, and machine learning. Taking an algorithmic approach, the book covers both classic and machine learning-based filtering algorithms. Readers of Nonlinear Filters will greatly benefit from the wide spectrum of presented topics including stability, robustness, computability, and algorithmic sufficiency. Readers will also enjoy: Organization that allows the book to act as a stand-alone, self-contained reference A thorough exploration of the notion of observability, nonlinear observers, and the theory of optimal nonlinear filtering that bridges the gap between different science and engineering disciplines A profound account of Bayesian filters including Kalman filter and its variants as well as particle filter A rigorous derivation of the smooth variable structure filter as a predictor-corrector estimator formulated based on a stability theorem, used to confine the estimated states within a neighborhood of their true values A concise tutorial on deep learning and reinforcement learning A detailed presentation of the expectation maximization algorithm and its machine learning-based variants, used for joint state and parameter estimation Guidelines for constructing nonparametric Bayesian models from parametric ones Perfect for researchers, professors, and graduate students in engineering, computer science, applied mathematics, and artificial intelligence, Nonlinear Filters: Theory and Applications will also earn a place in the libraries of those studying or practicing in fields involving pandemic diseases, cybersecurity, information fusion, augmented reality, autonomous driving, urban traffic network, navigation and tracking, robotics, power systems, hybrid technologies, and finance.

Bayesian Multiple Target Tracking, Second Edition

Bayesian Multiple Target Tracking, Second Edition
Author :
Publisher : Artech House
Total Pages : 315
Release :
ISBN-10 : 9781608075539
ISBN-13 : 1608075532
Rating : 4/5 (39 Downloads)

Synopsis Bayesian Multiple Target Tracking, Second Edition by : Lawrence D. Stone

This second edition has undergone substantial revision from the 1999 first edition, recognizing that a lot has changed in the multiple target tracking field. One of the most dramatic changes is in the widespread use of particle filters to implement nonlinear, non-Gaussian Bayesian trackers. This book views multiple target tracking as a Bayesian inference problem. Within this framework it develops the theory of single target tracking, multiple target tracking, and likelihood ratio detection and tracking. In addition to providing a detailed description of a basic particle filter that implements the Bayesian single target recursion, this resource provides numerous examples that involve the use of particle filters. With these examples illustrating the developed concepts, algorithms, and approaches -- the book helps radar engineers develop tracking solutions when observations are non-linear functions of target state, when the target state distributions or measurement error distributions are not Gaussian, in low data rate and low signal to noise ratio situations, and when notions of contact and association are merged or unresolved among more than one target.

Bayesian Filtering and Smoothing

Bayesian Filtering and Smoothing
Author :
Publisher : Cambridge University Press
Total Pages : 255
Release :
ISBN-10 : 9781107030657
ISBN-13 : 110703065X
Rating : 4/5 (57 Downloads)

Synopsis Bayesian Filtering and Smoothing by : Simo Särkkä

A unified Bayesian treatment of the state-of-the-art filtering, smoothing, and parameter estimation algorithms for non-linear state space models.

Integrated Tracking, Classification, and Sensor Management

Integrated Tracking, Classification, and Sensor Management
Author :
Publisher : John Wiley & Sons
Total Pages : 738
Release :
ISBN-10 : 9780470639054
ISBN-13 : 0470639059
Rating : 4/5 (54 Downloads)

Synopsis Integrated Tracking, Classification, and Sensor Management by : Mahendra Mallick

A unique guide to the state of the art of tracking, classification, and sensor management This book addresses the tremendous progress made over the last few decades in algorithm development and mathematical analysis for filtering, multi-target multi-sensor tracking, sensor management and control, and target classification. It provides for the first time an integrated treatment of these advanced topics, complete with careful mathematical formulation, clear description of the theory, and real-world applications. Written by experts in the field, Integrated Tracking, Classification, and Sensor Management provides readers with easy access to key Bayesian modeling and filtering methods, multi-target tracking approaches, target classification procedures, and large scale sensor management problem-solving techniques. Features include: An accessible coverage of random finite set based multi-target filtering algorithms such as the Probability Hypothesis Density filters and multi-Bernoulli filters with focus on problem solving A succinct overview of the track-oriented MHT that comprehensively collates all significant developments in filtering and tracking A state-of-the-art algorithm for hybrid Bayesian network (BN) inference that is efficient and scalable for complex classification models New structural results in stochastic sensor scheduling and algorithms for dynamic sensor scheduling and management Coverage of the posterior Cramer-Rao lower bound (PCRLB) for target tracking and sensor management Insight into cutting-edge military and civilian applications, including intelligence, surveillance, and reconnaissance (ISR) With its emphasis on the latest research results, Integrated Tracking, Classification, and Sensor Management is an invaluable guide for researchers and practitioners in statistical signal processing, radar systems, operations research, and control theory.

Academic Press Library in Signal Processing

Academic Press Library in Signal Processing
Author :
Publisher : Academic Press
Total Pages : 1013
Release :
ISBN-10 : 9780124116214
ISBN-13 : 0124116213
Rating : 4/5 (14 Downloads)

Synopsis Academic Press Library in Signal Processing by : Mats Viberg

This third volume, edited and authored by world leading experts, gives a review of the principles, methods and techniques of important and emerging research topics and technologies in array and statistical signal processing. With this reference source you will: - Quickly grasp a new area of research - Understand the underlying principles of a topic and its application - Ascertain how a topic relates to other areas and learn of the research issues yet to be resolved - Quick tutorial reviews of important and emerging topics of research in array and statistical signal processing - Presents core principles and shows their application - Reference content on core principles, technologies, algorithms and applications - Comprehensive references to journal articles and other literature on which to build further, more specific and detailed knowledge - Edited by leading people in the field who, through their reputation, have been able to commission experts to write on a particular topic

Tracking and Sensor Data Fusion

Tracking and Sensor Data Fusion
Author :
Publisher : Springer Science & Business Media
Total Pages : 261
Release :
ISBN-10 : 9783642392719
ISBN-13 : 3642392717
Rating : 4/5 (19 Downloads)

Synopsis Tracking and Sensor Data Fusion by : Wolfgang Koch

Sensor Data Fusion is the process of combining incomplete and imperfect pieces of mutually complementary sensor information in such a way that a better understanding of an underlying real-world phenomenon is achieved. Typically, this insight is either unobtainable otherwise or a fusion result exceeds what can be produced from a single sensor output in accuracy, reliability, or cost. This book provides an introduction Sensor Data Fusion, as an information technology as well as a branch of engineering science and informatics. Part I presents a coherent methodological framework, thus providing the prerequisites for discussing selected applications in Part II of the book. The presentation mirrors the author's views on the subject and emphasizes his own contributions to the development of particular aspects. With some delay, Sensor Data Fusion is likely to develop along lines similar to the evolution of another modern key technology whose origin is in the military domain, the Internet. It is the author's firm conviction that until now, scientists and engineers have only scratched the surface of the vast range of opportunities for research, engineering, and product development that still waits to be explored: the Internet of the Sensors.

Bayesian Signal Processing

Bayesian Signal Processing
Author :
Publisher : John Wiley & Sons
Total Pages : 404
Release :
ISBN-10 : 9781118210543
ISBN-13 : 1118210549
Rating : 4/5 (43 Downloads)

Synopsis Bayesian Signal Processing by : James V. Candy

New Bayesian approach helps you solve tough problems in signal processing with ease Signal processing is based on this fundamental concept—the extraction of critical information from noisy, uncertain data. Most techniques rely on underlying Gaussian assumptions for a solution, but what happens when these assumptions are erroneous? Bayesian techniques circumvent this limitation by offering a completely different approach that can easily incorporate non-Gaussian and nonlinear processes along with all of the usual methods currently available. This text enables readers to fully exploit the many advantages of the "Bayesian approach" to model-based signal processing. It clearly demonstrates the features of this powerful approach compared to the pure statistical methods found in other texts. Readers will discover how easily and effectively the Bayesian approach, coupled with the hierarchy of physics-based models developed throughout, can be applied to signal processing problems that previously seemed unsolvable. Bayesian Signal Processing features the latest generation of processors (particle filters) that have been enabled by the advent of high-speed/high-throughput computers. The Bayesian approach is uniformly developed in this book's algorithms, examples, applications, and case studies. Throughout this book, the emphasis is on nonlinear/non-Gaussian problems; however, some classical techniques (e.g. Kalman filters, unscented Kalman filters, Gaussian sums, grid-based filters, et al) are included to enable readers familiar with those methods to draw parallels between the two approaches. Special features include: Unified Bayesian treatment starting from the basics (Bayes's rule) to the more advanced (Monte Carlo sampling), evolving to the next-generation techniques (sequential Monte Carlo sampling) Incorporates "classical" Kalman filtering for linear, linearized, and nonlinear systems; "modern" unscented Kalman filters; and the "next-generation" Bayesian particle filters Examples illustrate how theory can be applied directly to a variety of processing problems Case studies demonstrate how the Bayesian approach solves real-world problems in practice MATLAB notes at the end of each chapter help readers solve complex problems using readily available software commands and point out software packages available Problem sets test readers' knowledge and help them put their new skills into practice The basic Bayesian approach is emphasized throughout this text in order to enable the processor to rethink the approach to formulating and solving signal processing problems from the Bayesian perspective. This text brings readers from the classical methods of model-based signal processing to the next generation of processors that will clearly dominate the future of signal processing for years to come. With its many illustrations demonstrating the applicability of the Bayesian approach to real-world problems in signal processing, this text is essential for all students, scientists, and engineers who investigate and apply signal processing to their everyday problems.