Artificial Intelligence Applications in Manufacturing

Artificial Intelligence Applications in Manufacturing
Author :
Publisher : Menlo Press, Calif. : AAAI Press/MIT Press
Total Pages : 486
Release :
ISBN-10 : UOM:39015023869285
ISBN-13 :
Rating : 4/5 (85 Downloads)

Synopsis Artificial Intelligence Applications in Manufacturing by : A. Fazel Famili

The past decade has seen considerable advances in CAE tools that employ leading-edge artificial intelligence techniques and that can be used with CAD/CAM tools to reduce design costs. In three parts, this book covers current Al applications that can prove beneficial in the design and planning stages of manufacturing, that can assist in solving scheduling and control problems, and that can be used in manufacturing integration.A. F. Famili is Research Scientist at the Knowledge Systems Laboratory of the National Research Council of Canada. Steven H. Kim is Visiting Fellow at the Design Research Institute, Cornell University. Dana S. Nau an Associate Professor in the Computer Science Department at the University of Maryland.Contents: Application of Machine Learning to Industrial Planning and Decision Making. Incorporating Special Purpose Resource Design in Planning to Make More Efficient Plans. Geometric Reasoning Using a Feature Algebra. Backward Assembly Planning Symmetry Groups in Solid Model-Based Assembly Planning. An Expert System Approach for Economic Evaluation of Machining Operation Planning. Interactive Problem Solving for Production Planning. An Abstraction-Based Search and Learning Approach for Effective Scheduling. ADDYMS: Architecture for Distributed Dynamic Manufacturing Scheduling. An Architecture for Real Time Distributed Scheduling. Teamwork Among Intelligent Agents: Framework and Case Study in Robotic Service. Exploiting Local Flexibility During Execution of Precomputed Schedules. Symbolic Representation and Planning for Robot Control Systems in Manufacturing. An Architecture for Integrating Enterprise Automation. An Intelligent Agent Framework for Enterprise Integration. Integrated Software System for Intelligent Manufacturing. Enterprise Management Network Architecture: A Tool for Manufacturing Enterprise Integration. Design and Manufacturing: Integration through Quality.

Applications of Artificial Intelligence in Additive Manufacturing

Applications of Artificial Intelligence in Additive Manufacturing
Author :
Publisher : Engineering Science Reference
Total Pages : 272
Release :
ISBN-10 : 179988516X
ISBN-13 : 9781799885160
Rating : 4/5 (6X Downloads)

Synopsis Applications of Artificial Intelligence in Additive Manufacturing by : Sachin Salunkhe

"This book provides introductory instruction on how to learn how to use artificial intelligence to produce additively manufactured parts, including a description of the starting points, what you can know, how it blends and how artificial intelligence in additive manufacturing apply"--

Applications of Artificial Intelligence in Process Systems Engineering

Applications of Artificial Intelligence in Process Systems Engineering
Author :
Publisher : Elsevier
Total Pages : 542
Release :
ISBN-10 : 9780128217436
ISBN-13 : 012821743X
Rating : 4/5 (36 Downloads)

Synopsis Applications of Artificial Intelligence in Process Systems Engineering by : Jingzheng Ren

Applications of Artificial Intelligence in Process Systems Engineering offers a broad perspective on the issues related to artificial intelligence technologies and their applications in chemical and process engineering. The book comprehensively introduces the methodology and applications of AI technologies in process systems engineering, making it an indispensable reference for researchers and students. As chemical processes and systems are usually non-linear and complex, thus making it challenging to apply AI methods and technologies, this book is an ideal resource on emerging areas such as cloud computing, big data, the industrial Internet of Things and deep learning. With process systems engineering's potential to become one of the driving forces for the development of AI technologies, this book covers all the right bases. - Explains the concept of machine learning, deep learning and state-of-the-art intelligent algorithms - Discusses AI-based applications in process modeling and simulation, process integration and optimization, process control, and fault detection and diagnosis - Gives direction to future development trends of AI technologies in chemical and process engineering

Artificial Intelligence and Industrial Applications

Artificial Intelligence and Industrial Applications
Author :
Publisher : Springer Nature
Total Pages : 341
Release :
ISBN-10 : 9783030539702
ISBN-13 : 3030539709
Rating : 4/5 (02 Downloads)

Synopsis Artificial Intelligence and Industrial Applications by : Tawfik Masrour

This book gathers selected papers from Artificial Intelligence and Industrial Applications (A2IA’2020), the first installment of an annual international conference organized by ENSAM-Meknes at Moulay Ismail University, Morocco. The 29 papers presented here were carefully reviewed and selected from 141 submissions by an international scientific committee. They address various aspects of artificial intelligence such as digital twin, multiagent systems, deep learning, image processing and analysis, control, prediction, modeling, optimization and design, as well as AI applications in industry, health, energy, agriculture, and education. The book is intended for AI experts, offering them a valuable overview and global outlook for the future, and highlights a wealth of innovative ideas and recent, important advances in AI applications, both of a foundational and practical nature. It will also appeal to non-experts who are curious about this timely and important subject.

Artificial Intelligence for Digitising Industry – Applications

Artificial Intelligence for Digitising Industry – Applications
Author :
Publisher : CRC Press
Total Pages : 435
Release :
ISBN-10 : 9781000794311
ISBN-13 : 1000794318
Rating : 4/5 (11 Downloads)

Synopsis Artificial Intelligence for Digitising Industry – Applications by : Ovidiu Vermesan

This book provides in-depth insights into use cases implementing artificial intelligence (AI) applications at the edge. It covers new ideas, concepts, research, and innovation to enable the development and deployment of AI, the industrial internet of things (IIoT), edge computing, and digital twin technologies in industrial environments. The work is based on the research results and activities of the AI4DI project, including an overview of industrial use cases, research, technological innovation, validation, and deployment. This book’s sections build on the research, development, and innovative ideas elaborated for applications in five industries: automotive, semiconductor, industrial machinery, food and beverage, and transportation. The articles included under each of these five industrial sectors discuss AI-based methods, techniques, models, algorithms, and supporting technologies, such as IIoT, edge computing, digital twins, collaborative robots, silicon-born AI circuit concepts, neuromorphic architectures, and augmented intelligence, that are anticipating the development of Industry 5.0. Automotive applications cover use cases addressing AI-based solutions for inbound logistics and assembly process optimisation, autonomous reconfigurable battery systems, virtual AI training platforms for robot learning, autonomous mobile robotic agents, and predictive maintenance for machines on the level of a digital twin. AI-based technologies and applications in the semiconductor manufacturing industry address use cases related to AI-based failure modes and effects analysis assistants, neural networks for predicting critical 3D dimensions in MEMS inertial sensors, machine vision systems developed in the wafer inspection production line, semiconductor wafer fault classifications, automatic inspection of scanning electron microscope cross-section images for technology verification, anomaly detection on wire bond process trace data, and optical inspection. The use cases presented for machinery and industrial equipment industry applications cover topics related to wood machinery, with the perception of the surrounding environment and intelligent robot applications. AI, IIoT, and robotics solutions are highlighted for the food and beverage industry, presenting use cases addressing novel AI-based environmental monitoring; autonomous environment-aware, quality control systems for Champagne production; and production process optimisation and predictive maintenance for soybeans manufacturing. For the transportation sector, the use cases presented cover the mobility-as-a-service development of AI-based fleet management for supporting multimodal transport. This book highlights the significant technological challenges that AI application developments in industrial sectors are facing, presenting several research challenges and open issues that should guide future development for evolution towards an environment-friendly Industry 5.0. The challenges presented for AI-based applications in industrial environments include issues related to complexity, multidisciplinary and heterogeneity, convergence of AI with other technologies, energy consumption and efficiency, knowledge acquisition, reasoning with limited data, fusion of heterogeneous data, availability of reliable data sets, verification, validation, and testing for decision-making processes.

AI in Manufacturing and Green Technology

AI in Manufacturing and Green Technology
Author :
Publisher : CRC Press
Total Pages : 172
Release :
ISBN-10 : 9781000171891
ISBN-13 : 1000171892
Rating : 4/5 (91 Downloads)

Synopsis AI in Manufacturing and Green Technology by : Sambit Kumar Mishra

This book focuses on environmental sustainability by employing elements of engineering and green computing through modern educational concepts and solutions. It visualizes the potential of artificial intelligence, enhanced by business activities and strategies for rapid implementation, in manufacturing and green technology. This book covers utilization of renewable resources and implementation of the latest energy-generation technologies. It discusses how to save natural resources from depletion and illustrates facilitation of green technology in industry through usage of advanced materials. The book also covers environmental sustainability and current trends in manufacturing. The book provides the basic concepts of green technology, along with the technology aspects, for researchers, faculty, and students.

Machine Learning in Industry

Machine Learning in Industry
Author :
Publisher : Springer Nature
Total Pages : 202
Release :
ISBN-10 : 9783030758479
ISBN-13 : 3030758478
Rating : 4/5 (79 Downloads)

Synopsis Machine Learning in Industry by : Shubhabrata Datta

This book covers different machine learning techniques such as artificial neural network, support vector machine, rough set theory and deep learning. It points out the difference between the techniques and their suitability for specific applications. This book also describes different applications of machine learning techniques for industrial problems. The book includes several case studies, helping researchers in academia and industries aspiring to use machine learning for solving practical industrial problems.

Artificial Intelligence and Industrial Applications

Artificial Intelligence and Industrial Applications
Author :
Publisher : Springer Nature
Total Pages : 442
Release :
ISBN-10 : 9783030511869
ISBN-13 : 3030511863
Rating : 4/5 (69 Downloads)

Synopsis Artificial Intelligence and Industrial Applications by : Tawfik Masrour

This book gathers the refereed proceedings of the Artificial Intelligence and Industrial Applications (A2IA’2020), the first installment of an annual international conference organized by the ENSAM-Meknes at Moulay Ismail University, Morocco. The 30 papers presented here were carefully reviewed and selected from 141 submissions by an international scientific committee. They address various aspects of artificial intelligence such as smart manufacturing, smart maintenance, smart supply chain management, supervised learning, unsupervised learning, reinforcement learning, graph-based and semi-supervised learning, neural networks, deep learning, planning and optimization, and other AI applications. The book is intended for AI experts, offering them a valuable overview of the status quo and a global outlook for the future, with many new and innovative ideas and recent important developments in AI applications, both of a foundational and practical nature. It will also appeal to non-experts who are curious about this timely and important subject.

Computational Intelligence in Manufacturing

Computational Intelligence in Manufacturing
Author :
Publisher : Woodhead Publishing
Total Pages : 226
Release :
ISBN-10 : 9780323918558
ISBN-13 : 0323918557
Rating : 4/5 (58 Downloads)

Synopsis Computational Intelligence in Manufacturing by : Kaushik Kumar

Computational Intelligence in Manufacturing addresses applications of AI, machine learning and other innovative computational techniques across the manufacturing supply chain. The rapid development of smart or digital manufacturing known as Industry 4.0 has swiftly provided a large number of opportunities for product and manufacturing process improvement. Selecting the appropriate technologies and combining them successfully is a challenge this book helps readers overcome . It explains how to prepare different manufacturing cells for flexibility and enhanced productivity with better supply chain management, e.g., calibrating design machine tools for automation and agility. Computational intelligence applications for non-conventional manufacturing processes such as ECM and EDM are covered alongside recent advances in traditional processes like casting, welding and metal forming. As well as describing specific applications, this practical guide also explains the computational intelligence paradigm for enhanced supply chain management. - Includes hot topics such as augmented and virtual reality applications in manufacturing - Provides details of computational techniques, such as nature inspired algorithms for manufacturing process modeling - Gives practical technical advice on how to calibrate processes and tools to work efficiently in an industry 4.0 system