Applying Contemporary Statistical Techniques

Applying Contemporary Statistical Techniques
Author :
Publisher : Elsevier
Total Pages : 676
Release :
ISBN-10 : 9780080527512
ISBN-13 : 0080527515
Rating : 4/5 (12 Downloads)

Synopsis Applying Contemporary Statistical Techniques by : Rand R. Wilcox

Applying Contemporary Statistical Techniques explains why traditional statistical methods are often inadequate or outdated when applied to modern problems. Wilcox demonstrates how new and more powerful techniques address these problems far more effectively, making these modern robust methods understandable, practical, and easily accessible.* Assumes no previous training in statistics * Explains how and why modern statistical methods provide more accurate results than conventional methods* Covers the latest developments on multiple comparisons * Includes recent advances in risk-based methods * Features many illustrations and examples using data from real studies * Describes and illustrates easy-to-use s-plus functions for applying cutting-edge techniques * Covers many contemporary ANOVA (analysis of variance) and regression methods not found in other books

Contemporary Statistical Models for the Plant and Soil Sciences

Contemporary Statistical Models for the Plant and Soil Sciences
Author :
Publisher : CRC Press
Total Pages : 762
Release :
ISBN-10 : 9781420040197
ISBN-13 : 1420040197
Rating : 4/5 (97 Downloads)

Synopsis Contemporary Statistical Models for the Plant and Soil Sciences by : Oliver Schabenberger

Despite its many origins in agronomic problems, statistics today is often unrecognizable in this context. Numerous recent methodological approaches and advances originated in other subject-matter areas and agronomists frequently find it difficult to see their immediate relation to questions that their disciplines raise. On the other hand, statisticians often fail to recognize the riches of challenging data analytical problems contemporary plant and soil science provides. The first book to integrate modern statistics with crop, plant and soil science, Contemporary Statistical Models for the Plant and Soil Sciences bridges this gap. The breadth and depth of topics covered is unusual. Each of the main chapters could be a textbook in its own right on a particular class of data structures or models. The cogent presentation in one text allows research workers to apply modern statistical methods that otherwise are scattered across several specialized texts. The combination of theory and application orientation conveys ìwhyî a particular method works and ìhowî it is put in to practice. About the downloadable resources The accompanying downloadable resources are a key component of the book. For each of the main chapters additional sections of text are available that cover mathematical derivations, special topics, and supplementary applications. It supplies the data sets and SAS code for all applications and examples in the text, macros that the author developed, and SAS tutorials ranging from basic data manipulation to advanced programming techniques and publication quality graphics. Contemporary statistical models can not be appreciated to their full potential without a good understanding of theory. They also can not be applied to their full potential without the aid of statistical software. Contemporary Statistical Models for the Plant and Soil Science provides the essential mix of theory and applications of statistical methods pertinent to research in life sciences.

Modern Statistics with R

Modern Statistics with R
Author :
Publisher :
Total Pages : 0
Release :
ISBN-10 : 1032497459
ISBN-13 : 9781032497457
Rating : 4/5 (59 Downloads)

Synopsis Modern Statistics with R by : Måns Thulin

The past decades have transformed the world of statistical data analysis, with new methods, new types of data, and new computational tools. Modern Statistics with R introduces you to key parts of this modern statistical toolkit. It teaches you: Data wrangling - importing, formatting, reshaping, merging, and filtering data in R. Exploratory data analysis - using visualisations and multivariate techniques to explore datasets. Statistical inference - modern methods for testing hypotheses and computing confidence intervals. Predictive modelling - regression models and machine learning methods for prediction, classification, and forecasting. Simulation - using simulation techniques for sample size computations and evaluations of statistical methods. Ethics in statistics - ethical issues and good statistical practice. R programming - writing code that is fast, readable, and (hopefully!) free from bugs. No prior programming experience is necessary. Clear explanations and examples are provided to accommodate readers at all levels of familiarity with statistical principles and coding practices. A basic understanding of probability theory can enhance comprehension of certain concepts discussed within this book. In addition to plenty of examples, the book includes more than 200 exercises, with fully worked solutions available at: www.modernstatisticswithr.com.

Modern Statistical Methods for Astronomy

Modern Statistical Methods for Astronomy
Author :
Publisher : Cambridge University Press
Total Pages : 495
Release :
ISBN-10 : 9780521767279
ISBN-13 : 052176727X
Rating : 4/5 (79 Downloads)

Synopsis Modern Statistical Methods for Astronomy by : Eric D. Feigelson

Modern Statistical Methods for Astronomy: With R Applications.

Introduction to Robust Estimation and Hypothesis Testing

Introduction to Robust Estimation and Hypothesis Testing
Author :
Publisher : Academic Press
Total Pages : 610
Release :
ISBN-10 : 9780127515427
ISBN-13 : 0127515429
Rating : 4/5 (27 Downloads)

Synopsis Introduction to Robust Estimation and Hypothesis Testing by : Rand R. Wilcox

This revised book provides a thorough explanation of the foundation of robust methods, incorporating the latest updates on R and S-Plus, robust ANOVA (Analysis of Variance) and regression. It guides advanced students and other professionals through the basic strategies used for developing practical solutions to problems, and provides a brief background on the foundations of modern methods, placing the new methods in historical context. Author Rand Wilcox includes chapter exercises and many real-world examples that illustrate how various methods perform in different situations. Introduction to Robust Estimation and Hypothesis Testing, Second Edition, focuses on the practical applications of modern, robust methods which can greatly enhance our chances of detecting true differences among groups and true associations among variables. * Covers latest developments in robust regression * Covers latest improvements in ANOVA * Includes newest rank-based methods * Describes and illustrated easy to use software

Ecological Statistics

Ecological Statistics
Author :
Publisher : Oxford University Press
Total Pages : 407
Release :
ISBN-10 : 9780199672547
ISBN-13 : 0199672547
Rating : 4/5 (47 Downloads)

Synopsis Ecological Statistics by : Gordon A. Fox

The application and interpretation of statistics are central to ecological study and practice. Ecologists are now asking more sophisticated questions than in the past. These new questions, together with the continued growth of computing power and the availability of new software, have created a new generation of statistical techniques. These have resulted in major recent developments in both our understanding and practice of ecological statistics. This novel book synthesizes a number of these changes, addressing key approaches and issues that tend to be overlooked in other books such as missing/censored data, correlation structure of data, heterogeneous data, and complex causal relationships. These issues characterize a large proportion of ecological data, but most ecologists' training in traditional statistics simply does not provide them with adequate preparation to handle the associated challenges. Uniquely, Ecological Statistics highlights the underlying links among many statistical approaches that attempt to tackle these issues. In particular, it gives readers an introduction to approaches to inference, likelihoods, generalized linear (mixed) models, spatially or phylogenetically-structured data, and data synthesis, with a strong emphasis on conceptual understanding and subsequent application to data analysis. Written by a team of practicing ecologists, mathematical explanations have been kept to the minimum necessary. This user-friendly textbook will be suitable for graduate students, researchers, and practitioners in the fields of ecology, evolution, environmental studies, and computational biology who are interested in updating their statistical tool kits. A companion web site provides example data sets and commented code in the R language.

An Introduction to Statistical Learning

An Introduction to Statistical Learning
Author :
Publisher : Springer Nature
Total Pages : 617
Release :
ISBN-10 : 9783031387470
ISBN-13 : 3031387473
Rating : 4/5 (70 Downloads)

Synopsis An Introduction to Statistical Learning by : Gareth James

An Introduction to Statistical Learning provides an accessible overview of the field of statistical learning, an essential toolset for making sense of the vast and complex data sets that have emerged in fields ranging from biology to finance, marketing, and astrophysics in the past twenty years. This book presents some of the most important modeling and prediction techniques, along with relevant applications. Topics include linear regression, classification, resampling methods, shrinkage approaches, tree-based methods, support vector machines, clustering, deep learning, survival analysis, multiple testing, and more. Color graphics and real-world examples are used to illustrate the methods presented. This book is targeted at statisticians and non-statisticians alike, who wish to use cutting-edge statistical learning techniques to analyze their data. Four of the authors co-wrote An Introduction to Statistical Learning, With Applications in R (ISLR), which has become a mainstay of undergraduate and graduate classrooms worldwide, as well as an important reference book for data scientists. One of the keys to its success was that each chapter contains a tutorial on implementing the analyses and methods presented in the R scientific computing environment. However, in recent years Python has become a popular language for data science, and there has been increasing demand for a Python-based alternative to ISLR. Hence, this book (ISLP) covers the same materials as ISLR but with labs implemented in Python. These labs will be useful both for Python novices, as well as experienced users.

Social Statistics

Social Statistics
Author :
Publisher : Routledge
Total Pages : 657
Release :
ISBN-10 : 9781135103484
ISBN-13 : 1135103488
Rating : 4/5 (84 Downloads)

Synopsis Social Statistics by : Thomas J. Linneman

Many fundamentally important decisions about our social life are a function of how well we understand and analyze DATA. This sounds so obvious but it is so misunderstood. Social statisticians struggle with this problem in their teaching constantly. This book and its approach is the ally and support of all instructors who want to accomplish this hugely important teaching goal. This innovative text for undergraduate social statistics courses is, (as one satisfied instructor put it), a "breath of fresh air." It departs from convention by not covering some techniques and topics that have been in social stat textbooks for 30 years, but that are no longer used by social scientists today. It also includes techniques that conventional wisdom has previously thought to be the province of graduate level courses. Linneman’s text is for those instructors looking for a thoroughly "modern" way to teach quantitative thinking, problem-solving, and statistical analysis to their students...an undergraduate social statistics course that recognizes the increasing ubiquity of analytical tools in our data-driven age and therefore the practical benefit of learning how to "do statistics," to "present results" effectively (to employers as well as instructors), and to "interpret" intelligently the quantitative arguments made by others. A NOTE ABOUT THE AUTHOR... At a recent Charter Day celebration, author Tom Linneman was awarded the Thomas Jefferson Teaching Award, the highest award given to young faculty members at the College of William and Mary. The citation for his award noted that Linneman has developed a reputation among his students as a demanding professor – but one who genuinely cares about them.

Modern Regression Techniques Using R

Modern Regression Techniques Using R
Author :
Publisher : SAGE
Total Pages : 217
Release :
ISBN-10 : 9781446206027
ISBN-13 : 1446206025
Rating : 4/5 (27 Downloads)

Synopsis Modern Regression Techniques Using R by : Daniel B Wright

Statistics is the language of modern empirical social and behavioural science and the varieties of regression form the basis of this language. Statistical and computing advances have led to new and exciting regressions that have become the necessary tools for any researcher in these fields. In a way that is refreshingly engaging and readable, Wright and London describe the most useful of these techniques and provide step-by-step instructions, using the freeware R, to analyze datasets that can be located on the books′ webpage: www.sagepub.co.uk/wrightandlondon. Techniques covered in this book include multilevel modeling, ANOVA and ANCOVA, path analysis, mediation and moderation, logistic regression (generalized linear models), generalized additive models, and robust methods. These are all tested out using a range of real research examples conducted by the authors in every chapter. Given the wide coverage of techniques, this book will be essential reading for any advanced undergraduate and graduate student (particularly in psychology) and for more experienced researchers wanting to learn how to apply some of the more recent statistical techniques to their datasets. The Authors are donating all royalties from the book to the American Partnership for Eosinophilic Disorders.

High-Dimensional Statistics

High-Dimensional Statistics
Author :
Publisher : Cambridge University Press
Total Pages : 571
Release :
ISBN-10 : 9781108498029
ISBN-13 : 1108498027
Rating : 4/5 (29 Downloads)

Synopsis High-Dimensional Statistics by : Martin J. Wainwright

A coherent introductory text from a groundbreaking researcher, focusing on clarity and motivation to build intuition and understanding.