Applications Of Mathematical Heat Transfer And Fluid Flow Models In Engineering And Medicine
Download Applications Of Mathematical Heat Transfer And Fluid Flow Models In Engineering And Medicine full books in PDF, epub, and Kindle. Read online free Applications Of Mathematical Heat Transfer And Fluid Flow Models In Engineering And Medicine ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads.
Author |
: Abram S. Dorfman |
Publisher |
: John Wiley & Sons |
Total Pages |
: 458 |
Release |
: 2017-02-06 |
ISBN-10 |
: 9781119320562 |
ISBN-13 |
: 1119320569 |
Rating |
: 4/5 (62 Downloads) |
Synopsis Applications of Mathematical Heat Transfer and Fluid Flow Models in Engineering and Medicine by : Abram S. Dorfman
Applications of mathematical heat transfer and fluid flow models in engineering and medicine Abram S. Dorfman, University of Michigan, USA Engineering and medical applications of cutting-edge heat and flow models This book presents innovative efficient methods in fluid flow and heat transfer developed and widely used over the last fifty years. The analysis is focused on mathematical models which are an essential part of any research effort as they demonstrate the validity of the results obtained. The universality of mathematics allows consideration of engineering and biological problems from one point of view using similar models. In this book, the current situation of applications of modern mathematical models is outlined in three parts. Part I offers in depth coverage of the applications of contemporary conjugate heat transfer models in various industrial and technological processes, from aerospace and nuclear reactors to drying and food processing. In Part II the theory and application of two recently developed models in fluid flow are considered: the similar conjugate model for simulation of biological systems, including flows in human organs, and applications of the latest developments in turbulence simulation by direct solution of Navier-Stokes equations, including flows around aircraft. Part III proposes fundamentals of laminar and turbulent flows and applied mathematics methods. The discussion is complimented by 365 examples selected from a list of 448 cited papers, 239 exercises and 136 commentaries. Key features: Peristaltic flows in normal and pathologic human organs. Modeling flows around aircraft at high Reynolds numbers. Special mathematical exercises allow the reader to complete expressions derivation following directions from the text. Procedure for preliminary choice between conjugate and common simple methods for particular problem solutions. Criterions of conjugation, definition of semi-conjugate solutions. This book is an ideal reference for graduate and post-graduate students and engineers.
Author |
: Sid M. Becker |
Publisher |
: Academic Press |
Total Pages |
: 428 |
Release |
: 2014-12-31 |
ISBN-10 |
: 9780124079007 |
ISBN-13 |
: 0124079008 |
Rating |
: 4/5 (07 Downloads) |
Synopsis Heat Transfer and Fluid Flow in Biological Processes by : Sid M. Becker
Heat Transfer and Fluid Flow in Biological Processes covers emerging areas in fluid flow and heat transfer relevant to biosystems and medical technology. This book uses an interdisciplinary approach to provide a comprehensive prospective on biofluid mechanics and heat transfer advances and includes reviews of the most recent methods in modeling of flows in biological media, such as CFD. Written by internationally recognized researchers in the field, each chapter provides a strong introductory section that is useful to both readers currently in the field and readers interested in learning more about these areas. Heat Transfer and Fluid Flow in Biological Processes is an indispensable reference for professors, graduate students, professionals, and clinical researchers in the fields of biology, biomedical engineering, chemistry and medicine working on applications of fluid flow, heat transfer, and transport phenomena in biomedical technology. - Provides a wide range of biological and clinical applications of fluid flow and heat transfer in biomedical technology - Covers topics such as electrokinetic transport, electroporation of cells and tissue dialysis, inert solute transport (insulin), thermal ablation of cancerous tissue, respiratory therapies, and associated medical technologies - Reviews the most recent advances in modeling techniques
Author |
: Radyadour Kh. Zeytounian |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 498 |
Release |
: 2013-06-29 |
ISBN-10 |
: 9783662104477 |
ISBN-13 |
: 3662104474 |
Rating |
: 4/5 (77 Downloads) |
Synopsis Theory and Applications of Viscous Fluid Flows by : Radyadour Kh. Zeytounian
This book closes the gap between standard undergraduate texts on fluid mechanics and monographical publications devoted to specific aspects of viscous fluid flows. Each chapter serves as an introduction to a special topic that will facilitate later application by readers in their research work.
Author |
: Mehrdad Massoudi |
Publisher |
: MDPI |
Total Pages |
: 470 |
Release |
: 2020-04-16 |
ISBN-10 |
: 9783039287208 |
ISBN-13 |
: 3039287206 |
Rating |
: 4/5 (08 Downloads) |
Synopsis Mathematical Modeling of Fluid Flow and Heat Transfer in Petroleum Industries and Geothermal Applications by : Mehrdad Massoudi
Geothermal energy is the thermal energy generated and stored in the Earth's core, mantle, and crust. Geothermal technologies are used to generate electricity and to heat and cool buildings. To develop accurate models for heat and mass transfer applications involving fluid flow in geothermal applications or reservoir engineering and petroleum industries, a basic knowledge of the rheological and transport properties of the materials involved (drilling fluid, rock properties, etc.)—especially in high-temperature and high-pressure environments—are needed. This Special Issue considers all aspects of fluid flow and heat transfer in geothermal applications, including the ground heat exchanger, conduction and convection in porous media. The emphasis here is on mathematical and computational aspects of fluid flow in conventional and unconventional reservoirs, geothermal engineering, fluid flow, and heat transfer in drilling engineering and enhanced oil recovery (hydraulic fracturing, CO2 injection, etc.) applications.
Author |
: DUTTA, BINAY K. |
Publisher |
: PHI Learning Pvt. Ltd. |
Total Pages |
: 649 |
Release |
: 2023-07-01 |
ISBN-10 |
: 9788196378905 |
ISBN-13 |
: 8196378904 |
Rating |
: 4/5 (05 Downloads) |
Synopsis HEAT TRANSFER, SECOND EDITION by : DUTTA, BINAY K.
This textbook is intended for courses in heat transfer for undergraduates, not only in chemical engineering and related disciplines of biochemical engineering, and chemical technology, but also in mechanical engineering and production engineering. The author provides the reader with a thorough account of the fundamental principles and their applications to engineering practice, including a survey of the recent developments in heat transfer equipment. A whole chapter has been devoted to explain the concept of the heat transfer coefficient to give a feel of its importance in tackling problems of convective heat transfer. The use of the important heat transfer correlations has been illustrated with carefully selected examples. In addition to an overview of the construction, operation and selection of equipment for heating, cooling, and phase change (boiling, condensation and evaporation), the revised second edition provides glimpses of the present trends and practice relating to heat transfer equipment in process industries and illustrative photographs of the state-of-the-art equipment. The design procedures of more common heat exchangers such as shell-and-tube, air-cooled, plate-and-frame, spiral plate, and spiral tube have been illustrated with realistic examples. Several new examples and problems have been included. Comparison with ASPEN simulation results has been given for a shell-and-tube exchanger. Cost calculation of a heat exchanger from the first principles is included. Recent topics such as heat transfer in microchannels and nano-fluids, and bio-heat transfer have been introduced. WHAT IS NEW TO THIS EDITION? • Thoroughly recast chapters providing glimpses of the recent developments in theory and application areas of the subject. • A new chapter (Chapter 12) on Microchannel, Nano-and Bio-heat Transfer added to introduce the readers to the newer areas of research and application. • Chapter 8 on Heat Exchangers has been thoroughly revised in consideration of the practical and direct use of the theoretical principles. • Topics such as the Bell Method of heat exchanger design, sizing of air-cooled heat exchangers, plate heat exchanger, spiral plate and spiral tube heat exchangers are some of the fresh additions • Results of a few ASPEN simulations are given in Appendix B. Cost estimation of a S&T heat exchanger from first principles is described in Appendix C. Target Audience • B.Tech. (chemical engineering and related disciplines of biochemical engineering and chemical technology). • Also for courses on heat transfer in mechanical and production engineering.
Author |
: Maan H. Jawad |
Publisher |
: John Wiley & Sons |
Total Pages |
: 349 |
Release |
: 2017-10-23 |
ISBN-10 |
: 9781119259282 |
ISBN-13 |
: 1119259282 |
Rating |
: 4/5 (82 Downloads) |
Synopsis Stress in ASME Pressure Vessels, Boilers, and Nuclear Components by : Maan H. Jawad
An illustrative guide to the analysis needed to achieve a safe design in ASME Pressure Vessels, Boilers, and Nuclear Components Stress in ASME Pressure Vessels, Boilers, and Nuclear Components offers a revised and updatededition of the text, Design of Plate and Shell Structures. This important resource offers engineers and students a text that covers the complexities involved in stress loads and design of plates and shell components in compliance with pressure vessel, boiler, and nuclear standards. The author covers the basic theories and includes a wealth of illustrative examples for the design of components that address the internal and external loads as well as other loads such as wind and dead loads. The text keeps the various derivations relatively simple and the resulting equations are revised to a level so that they can be applied directly to real-world design problems. The many examples clearly show the level of analysis needed to achieve a safe design based on a given required degree of accuracy. Written to be both authoritative and accessible, this important updated book: Offers an increased focus on mechanical engineering and contains more specific and practical code-related guidelines Includes problems and solutions for course and professional training use Examines the basic aspects of relevant theories and gives examples for the design of components Contains various derivations that are kept relatively simple so that they can be applied directly to design problems Written for professional mechanical engineers and students, this text offers a resource to the theories and applications that are needed to achieve an understanding of stress loads and design of plates and shell components in compliance with pressure vessel, boiler, and nuclear standards.
Author |
: Mou Chen |
Publisher |
: John Wiley & Sons |
Total Pages |
: 254 |
Release |
: 2017-10-20 |
ISBN-10 |
: 9781119393337 |
ISBN-13 |
: 1119393337 |
Rating |
: 4/5 (37 Downloads) |
Synopsis Robust Adaptive Control for Fractional-Order Systems with Disturbance and Saturation by : Mou Chen
A treatise on investigating tracking control and synchronization control of fractional-order nonlinear systems with system uncertainties, external disturbance, and input saturation Robust Adaptive Control for Fractional-Order Systems, with Disturbance and Saturation provides the reader with a good understanding on how to achieve tracking control and synchronization control of fractional-order nonlinear systems with system uncertainties, external disturbance, and input saturation. Although some texts have touched upon control of fractional-order systems, the issues of input saturation and disturbances have rarely been considered together. This book offers chapter coverage of fractional calculus and fractional-order systems; fractional-order PID controller and fractional-order disturbance observer; design of fractional-order controllers for nonlinear chaotic systems and some applications; sliding mode control for fractional-order nonlinear systems based on disturbance observer; disturbance observer based neural control for an uncertain fractional-order rotational mechanical system; adaptive neural tracking control for uncertain fractional-order chaotic systems subject to input saturation and disturbance; stabilization control of continuous-time fractional positive systems based on disturbance observer; sliding mode synchronization control for fractional-order chaotic systems with disturbance; and more. Based on the approximation ability of the neural network (NN), the adaptive neural control schemes are reported for uncertain fractional-order nonlinear systems Covers the disturbance estimation techniques that have been developed to alleviate the restriction faced by traditional feedforward control and reject the effect of external disturbances for uncertain fractional-order nonlinear systems By combining the NN with the disturbance observer, the disturbance observer based adaptive neural control schemes have been studied for uncertain fractional-order nonlinear systems with unknown disturbances Considers, together, the issue of input saturation and the disturbance for the control of fractional-order nonlinear systems in the present of system uncertainty, external disturbance, and input saturation Robust Adaptive Control for Fractional-Order Systems, with Disturbance and Saturation can be used as a reference for the academic research on fractional-order nonlinear systems or used in Ph.D. study of control theory and engineering.
Author |
: Yunong Zhang |
Publisher |
: John Wiley & Sons |
Total Pages |
: 319 |
Release |
: 2017-11-13 |
ISBN-10 |
: 9781119381235 |
ISBN-13 |
: 1119381231 |
Rating |
: 4/5 (35 Downloads) |
Synopsis Robot Manipulator Redundancy Resolution by : Yunong Zhang
Introduces a revolutionary, quadratic-programming based approach to solving long-standing problems in motion planning and control of redundant manipulators This book describes a novel quadratic programming approach to solving redundancy resolutions problems with redundant manipulators. Known as ``QP-unified motion planning and control of redundant manipulators'' theory, it systematically solves difficult optimization problems of inequality-constrained motion planning and control of redundant manipulators that have plagued robotics engineers and systems designers for more than a quarter century. An example of redundancy resolution could involve a robotic limb with six joints, or degrees of freedom (DOFs), with which to position an object. As only five numbers are required to specify the position and orientation of the object, the robot can move with one remaining DOF through practically infinite poses while performing a specified task. In this case redundancy resolution refers to the process of choosing an optimal pose from among that infinite set. A critical issue in robotic systems control, the redundancy resolution problem has been widely studied for decades, and numerous solutions have been proposed. This book investigates various approaches to motion planning and control of redundant robot manipulators and describes the most successful strategy thus far developed for resolving redundancy resolution problems. Provides a fully connected, systematic, methodological, consecutive, and easy approach to solving redundancy resolution problems Describes a new approach to the time-varying Jacobian matrix pseudoinversion, applied to the redundant-manipulator kinematic control Introduces The QP-based unification of robots' redundancy resolution Illustrates the effectiveness of the methods presented using a large number of computer simulation results based on PUMA560, PA10, and planar robot manipulators Provides technical details for all schemes and solvers presented, for readers to adopt and customize them for specific industrial applications Robot Manipulator Redundancy Resolution is must-reading for advanced undergraduates and graduate students of robotics, mechatronics, mechanical engineering, tracking control, neural dynamics/neural networks, numerical algorithms, computation and optimization, simulation and modelling, analog, and digital circuits. It is also a valuable working resource for practicing robotics engineers and systems designers and industrial researchers.
Author |
: Rene Van den Braembussche |
Publisher |
: John Wiley & Sons |
Total Pages |
: 609 |
Release |
: 2019-01-14 |
ISBN-10 |
: 9781119424109 |
ISBN-13 |
: 1119424100 |
Rating |
: 4/5 (09 Downloads) |
Synopsis Design and Analysis of Centrifugal Compressors by : Rene Van den Braembussche
A comprehensive overview of fluid dynamic models and experimental results that can help solve problems in centrifugal compressors and modern techniques for a more efficient aerodynamic design. Design and Analysis of Centrifugal Compressors isacomprehensive overview of the theoretical fluid dynamic models describing the flow in centrifugal compressors and the modern techniques for the design of more efficient centrifugal compressors. The author — a noted expert in the field, with over 40 years of experience — evaluates relevant numerical and analytical prediction models for centrifugal compressors with special attention to their accuracy and limitations. Relevant knowledge from the last century is linked with new insights obtained from modern CFD. Emphasis is to link the flow structure, performance and stability to the geometry of the different compressor components. Design and Analysis of Centrifugal Compressors is an accessible resource that combines theory with experimental data and previous research with recent developments in computational design and optimization. This important resource Covers the basic information concerning fluid dynamics that are specific for centrifugal compressors and clarifies the differences with axial compressors Provides an overview of performance prediction models previously developed in combination with extra results from research conducted by the author Describes helpful numerical and analytical models for the flow in the different components in relation to flow stability, operating range and performance Includes the fundamental information for the aerodynamic design of more efficient centrifugal compressors Explains the use of computational fluid dynamics (CFD) for the design and analysis of centrifugal compressors Written for engineers, researchers and designers in industry as well as for academics specializing in the field, Design and Analysis of Centrifugal Compressors offers an up to date overview of the information needed for the design of more effective centrifugal compressors.
Author |
: Jamil Ghojel |
Publisher |
: John Wiley & Sons |
Total Pages |
: 536 |
Release |
: 2020-02-05 |
ISBN-10 |
: 9781119548782 |
ISBN-13 |
: 1119548780 |
Rating |
: 4/5 (82 Downloads) |
Synopsis Fundamentals of Heat Engines by : Jamil Ghojel
Summarizes the analysis and design of today’s gas heat engine cycles This book offers readers comprehensive coverage of heat engine cycles. From ideal (theoretical) cycles to practical cycles and real cycles, it gradually increases in degree of complexity so that newcomers can learn and advance at a logical pace, and so instructors can tailor their courses toward each class level. To facilitate the transition from one type of cycle to another, it offers readers additional material covering fundamental engineering science principles in mechanics, fluid mechanics, thermodynamics, and thermochemistry. Fundamentals of Heat Engines: Reciprocating and Gas Turbine Internal-Combustion Engines begins with a review of some fundamental principles of engineering science, before covering a wide range of topics on thermochemistry. It next discusses theoretical aspects of the reciprocating piston engine, starting with simple air-standard cycles, followed by theoretical cycles of forced induction engines, and ending with more realistic cycles that can be used to predict engine performance as a first approximation. Lastly, the book looks at gas turbines and covers cycles with gradually increasing complexity to end with realistic engine design-point and off-design calculations methods. Covers two main heat engines in one single reference Teaches heat engine fundamentals as well as advanced topics Includes comprehensive thermodynamic and thermochemistry data Offers customizable content to suit beginner or advanced undergraduate courses and entry-level postgraduate studies in automotive, mechanical, and aerospace degrees Provides representative problems at the end of most chapters, along with a detailed example of piston-engine design-point calculations Features case studies of design-point calculations of gas turbine engines in two chapters Fundamentals of Heat Engines can be adopted for mechanical, aerospace, and automotive engineering courses at different levels and will also benefit engineering professionals in those fields and beyond.