An Introduction To Bayesian Inference Methods And Computation
Download An Introduction To Bayesian Inference Methods And Computation full books in PDF, epub, and Kindle. Read online free An Introduction To Bayesian Inference Methods And Computation ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads.
Author |
: Nick Heard |
Publisher |
: Springer Nature |
Total Pages |
: 177 |
Release |
: 2021-10-17 |
ISBN-10 |
: 9783030828080 |
ISBN-13 |
: 3030828085 |
Rating |
: 4/5 (80 Downloads) |
Synopsis An Introduction to Bayesian Inference, Methods and Computation by : Nick Heard
These lecture notes provide a rapid, accessible introduction to Bayesian statistical methods. The course covers the fundamental philosophy and principles of Bayesian inference, including the reasoning behind the prior/likelihood model construction synonymous with Bayesian methods, through to advanced topics such as nonparametrics, Gaussian processes and latent factor models. These advanced modelling techniques can easily be applied using computer code samples written in Python and Stan which are integrated into the main text. Importantly, the reader will learn methods for assessing model fit, and to choose between rival modelling approaches.
Author |
: M. Antónia Amaral Turkman |
Publisher |
: Cambridge University Press |
Total Pages |
: 256 |
Release |
: 2019-02-28 |
ISBN-10 |
: 9781108481038 |
ISBN-13 |
: 1108481035 |
Rating |
: 4/5 (38 Downloads) |
Synopsis Computational Bayesian Statistics by : M. Antónia Amaral Turkman
This integrated introduction to fundamentals, computation, and software is your key to understanding and using advanced Bayesian methods.
Author |
: Cameron Davidson-Pilon |
Publisher |
: Addison-Wesley Professional |
Total Pages |
: 551 |
Release |
: 2015-09-30 |
ISBN-10 |
: 9780133902921 |
ISBN-13 |
: 0133902927 |
Rating |
: 4/5 (21 Downloads) |
Synopsis Bayesian Methods for Hackers by : Cameron Davidson-Pilon
Master Bayesian Inference through Practical Examples and Computation–Without Advanced Mathematical Analysis Bayesian methods of inference are deeply natural and extremely powerful. However, most discussions of Bayesian inference rely on intensely complex mathematical analyses and artificial examples, making it inaccessible to anyone without a strong mathematical background. Now, though, Cameron Davidson-Pilon introduces Bayesian inference from a computational perspective, bridging theory to practice–freeing you to get results using computing power. Bayesian Methods for Hackers illuminates Bayesian inference through probabilistic programming with the powerful PyMC language and the closely related Python tools NumPy, SciPy, and Matplotlib. Using this approach, you can reach effective solutions in small increments, without extensive mathematical intervention. Davidson-Pilon begins by introducing the concepts underlying Bayesian inference, comparing it with other techniques and guiding you through building and training your first Bayesian model. Next, he introduces PyMC through a series of detailed examples and intuitive explanations that have been refined after extensive user feedback. You’ll learn how to use the Markov Chain Monte Carlo algorithm, choose appropriate sample sizes and priors, work with loss functions, and apply Bayesian inference in domains ranging from finance to marketing. Once you’ve mastered these techniques, you’ll constantly turn to this guide for the working PyMC code you need to jumpstart future projects. Coverage includes • Learning the Bayesian “state of mind” and its practical implications • Understanding how computers perform Bayesian inference • Using the PyMC Python library to program Bayesian analyses • Building and debugging models with PyMC • Testing your model’s “goodness of fit” • Opening the “black box” of the Markov Chain Monte Carlo algorithm to see how and why it works • Leveraging the power of the “Law of Large Numbers” • Mastering key concepts, such as clustering, convergence, autocorrelation, and thinning • Using loss functions to measure an estimate’s weaknesses based on your goals and desired outcomes • Selecting appropriate priors and understanding how their influence changes with dataset size • Overcoming the “exploration versus exploitation” dilemma: deciding when “pretty good” is good enough • Using Bayesian inference to improve A/B testing • Solving data science problems when only small amounts of data are available Cameron Davidson-Pilon has worked in many areas of applied mathematics, from the evolutionary dynamics of genes and diseases to stochastic modeling of financial prices. His contributions to the open source community include lifelines, an implementation of survival analysis in Python. Educated at the University of Waterloo and at the Independent University of Moscow, he currently works with the online commerce leader Shopify.
Author |
: Jean-Michel Marin |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 265 |
Release |
: 2007-02-06 |
ISBN-10 |
: 9780387389790 |
ISBN-13 |
: 0387389792 |
Rating |
: 4/5 (90 Downloads) |
Synopsis Bayesian Core: A Practical Approach to Computational Bayesian Statistics by : Jean-Michel Marin
This Bayesian modeling book provides the perfect entry for gaining a practical understanding of Bayesian methodology. It focuses on standard statistical models and is backed up by discussed real datasets available from the book website.
Author |
: Osvaldo A. Martin |
Publisher |
: CRC Press |
Total Pages |
: 420 |
Release |
: 2021-12-28 |
ISBN-10 |
: 9781000520040 |
ISBN-13 |
: 1000520048 |
Rating |
: 4/5 (40 Downloads) |
Synopsis Bayesian Modeling and Computation in Python by : Osvaldo A. Martin
Bayesian Modeling and Computation in Python aims to help beginner Bayesian practitioners to become intermediate modelers. It uses a hands on approach with PyMC3, Tensorflow Probability, ArviZ and other libraries focusing on the practice of applied statistics with references to the underlying mathematical theory. The book starts with a refresher of the Bayesian Inference concepts. The second chapter introduces modern methods for Exploratory Analysis of Bayesian Models. With an understanding of these two fundamentals the subsequent chapters talk through various models including linear regressions, splines, time series, Bayesian additive regression trees. The final chapters include Approximate Bayesian Computation, end to end case studies showing how to apply Bayesian modelling in different settings, and a chapter about the internals of probabilistic programming languages. Finally the last chapter serves as a reference for the rest of the book by getting closer into mathematical aspects or by extending the discussion of certain topics. This book is written by contributors of PyMC3, ArviZ, Bambi, and Tensorflow Probability among other libraries.
Author |
: Peter D. Hoff |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 270 |
Release |
: 2009-06-02 |
ISBN-10 |
: 9780387924076 |
ISBN-13 |
: 0387924078 |
Rating |
: 4/5 (76 Downloads) |
Synopsis A First Course in Bayesian Statistical Methods by : Peter D. Hoff
A self-contained introduction to probability, exchangeability and Bayes’ rule provides a theoretical understanding of the applied material. Numerous examples with R-code that can be run "as-is" allow the reader to perform the data analyses themselves. The development of Monte Carlo and Markov chain Monte Carlo methods in the context of data analysis examples provides motivation for these computational methods.
Author |
: Andrew Gelman |
Publisher |
: CRC Press |
Total Pages |
: 677 |
Release |
: 2013-11-01 |
ISBN-10 |
: 9781439840955 |
ISBN-13 |
: 1439840954 |
Rating |
: 4/5 (55 Downloads) |
Synopsis Bayesian Data Analysis, Third Edition by : Andrew Gelman
Now in its third edition, this classic book is widely considered the leading text on Bayesian methods, lauded for its accessible, practical approach to analyzing data and solving research problems. Bayesian Data Analysis, Third Edition continues to take an applied approach to analysis using up-to-date Bayesian methods. The authors—all leaders in the statistics community—introduce basic concepts from a data-analytic perspective before presenting advanced methods. Throughout the text, numerous worked examples drawn from real applications and research emphasize the use of Bayesian inference in practice. New to the Third Edition Four new chapters on nonparametric modeling Coverage of weakly informative priors and boundary-avoiding priors Updated discussion of cross-validation and predictive information criteria Improved convergence monitoring and effective sample size calculations for iterative simulation Presentations of Hamiltonian Monte Carlo, variational Bayes, and expectation propagation New and revised software code The book can be used in three different ways. For undergraduate students, it introduces Bayesian inference starting from first principles. For graduate students, the text presents effective current approaches to Bayesian modeling and computation in statistics and related fields. For researchers, it provides an assortment of Bayesian methods in applied statistics. Additional materials, including data sets used in the examples, solutions to selected exercises, and software instructions, are available on the book’s web page.
Author |
: Daniela Calvetti |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 202 |
Release |
: 2007-11-20 |
ISBN-10 |
: 9780387733944 |
ISBN-13 |
: 0387733949 |
Rating |
: 4/5 (44 Downloads) |
Synopsis An Introduction to Bayesian Scientific Computing by : Daniela Calvetti
This book has been written for undergraduate and graduate students in various disciplines of mathematics. The authors, internationally recognized experts in their field, have developed a superior teaching and learning tool that makes it easy to grasp new concepts and apply them in practice. The book’s highly accessible approach makes it particularly ideal if you want to become acquainted with the Bayesian approach to computational science, but do not need to be fully immersed in detailed statistical analysis.
Author |
: Virgilio Gomez-Rubio |
Publisher |
: CRC Press |
Total Pages |
: 330 |
Release |
: 2020-02-20 |
ISBN-10 |
: 9781351707206 |
ISBN-13 |
: 1351707205 |
Rating |
: 4/5 (06 Downloads) |
Synopsis Bayesian inference with INLA by : Virgilio Gomez-Rubio
The integrated nested Laplace approximation (INLA) is a recent computational method that can fit Bayesian models in a fraction of the time required by typical Markov chain Monte Carlo (MCMC) methods. INLA focuses on marginal inference on the model parameters of latent Gaussian Markov random fields models and exploits conditional independence properties in the model for computational speed. Bayesian Inference with INLA provides a description of INLA and its associated R package for model fitting. This book describes the underlying methodology as well as how to fit a wide range of models with R. Topics covered include generalized linear mixed-effects models, multilevel models, spatial and spatio-temporal models, smoothing methods, survival analysis, imputation of missing values, and mixture models. Advanced features of the INLA package and how to extend the number of priors and latent models available in the package are discussed. All examples in the book are fully reproducible and datasets and R code are available from the book website. This book will be helpful to researchers from different areas with some background in Bayesian inference that want to apply the INLA method in their work. The examples cover topics on biostatistics, econometrics, education, environmental science, epidemiology, public health, and the social sciences.
Author |
: David Lunn |
Publisher |
: CRC Press |
Total Pages |
: 393 |
Release |
: 2012-10-02 |
ISBN-10 |
: 9781466586666 |
ISBN-13 |
: 1466586664 |
Rating |
: 4/5 (66 Downloads) |
Synopsis The BUGS Book by : David Lunn
Bayesian statistical methods have become widely used for data analysis and modelling in recent years, and the BUGS software has become the most popular software for Bayesian analysis worldwide. Authored by the team that originally developed this software, The BUGS Book provides a practical introduction to this program and its use. The text presents