Algebraic Statistics For Computational Biology
Download Algebraic Statistics For Computational Biology full books in PDF, epub, and Kindle. Read online free Algebraic Statistics For Computational Biology ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads.
Author |
: L. Pachter |
Publisher |
: Cambridge University Press |
Total Pages |
: 440 |
Release |
: 2005-08-22 |
ISBN-10 |
: 0521857007 |
ISBN-13 |
: 9780521857000 |
Rating |
: 4/5 (07 Downloads) |
Synopsis Algebraic Statistics for Computational Biology by : L. Pachter
This book, first published in 2005, offers an introduction to the application of algebraic statistics to computational biology.
Author |
: Seth Sullivant |
Publisher |
: American Mathematical Soc. |
Total Pages |
: 506 |
Release |
: 2018-11-19 |
ISBN-10 |
: 9781470435172 |
ISBN-13 |
: 1470435179 |
Rating |
: 4/5 (72 Downloads) |
Synopsis Algebraic Statistics by : Seth Sullivant
Algebraic statistics uses tools from algebraic geometry, commutative algebra, combinatorics, and their computational sides to address problems in statistics and its applications. The starting point for this connection is the observation that many statistical models are semialgebraic sets. The algebra/statistics connection is now over twenty years old, and this book presents the first broad introductory treatment of the subject. Along with background material in probability, algebra, and statistics, this book covers a range of topics in algebraic statistics including algebraic exponential families, likelihood inference, Fisher's exact test, bounds on entries of contingency tables, design of experiments, identifiability of hidden variable models, phylogenetic models, and model selection. With numerous examples, references, and over 150 exercises, this book is suitable for both classroom use and independent study.
Author |
: Ronald W. Shonkwiler |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 552 |
Release |
: 2009-08-04 |
ISBN-10 |
: 9780387709840 |
ISBN-13 |
: 0387709843 |
Rating |
: 4/5 (40 Downloads) |
Synopsis Mathematical Biology by : Ronald W. Shonkwiler
This text presents mathematical biology as a field with a unity of its own, rather than only the intrusion of one science into another. The book focuses on problems of contemporary interest, such as cancer, genetics, and the rapidly growing field of genomics.
Author |
: Matthew He |
Publisher |
: John Wiley & Sons |
Total Pages |
: 231 |
Release |
: 2011-03-16 |
ISBN-10 |
: 9781118099520 |
ISBN-13 |
: 1118099524 |
Rating |
: 4/5 (20 Downloads) |
Synopsis Mathematics of Bioinformatics by : Matthew He
Mathematics of Bioinformatics: Theory, Methods, and Applications provides a comprehensive format for connecting and integrating information derived from mathematical methods and applying it to the understanding of biological sequences, structures, and networks. Each chapter is divided into a number of sections based on the bioinformatics topics and related mathematical theory and methods. Each topic of the section is comprised of the following three parts: an introduction to the biological problems in bioinformatics; a presentation of relevant topics of mathematical theory and methods to the bioinformatics problems introduced in the first part; an integrative overview that draws the connections and interfaces between bioinformatics problems/issues and mathematical theory/methods/applications.
Author |
: Michael Stumpf |
Publisher |
: John Wiley & Sons |
Total Pages |
: 624 |
Release |
: 2011-09-09 |
ISBN-10 |
: 9781119952046 |
ISBN-13 |
: 1119952042 |
Rating |
: 4/5 (46 Downloads) |
Synopsis Handbook of Statistical Systems Biology by : Michael Stumpf
Systems Biology is now entering a mature phase in which the key issues are characterising uncertainty and stochastic effects in mathematical models of biological systems. The area is moving towards a full statistical analysis and probabilistic reasoning over the inferences that can be made from mathematical models. This handbook presents a comprehensive guide to the discipline for practitioners and educators, in providing a full and detailed treatment of these important and emerging subjects. Leading experts in systems biology and statistics have come together to provide insight in to the major ideas in the field, and in particular methods of specifying and fitting models, and estimating the unknown parameters. This book: Provides a comprehensive account of inference techniques in systems biology. Introduces classical and Bayesian statistical methods for complex systems. Explores networks and graphical modeling as well as a wide range of statistical models for dynamical systems. Discusses various applications for statistical systems biology, such as gene regulation and signal transduction. Features statistical data analysis on numerous technologies, including metabolic and transcriptomic technologies. Presents an in-depth presentation of reverse engineering approaches. Provides colour illustrations to explain key concepts. This handbook will be a key resource for researchers practising systems biology, and those requiring a comprehensive overview of this important field.
Author |
: Mihai Putinar |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 382 |
Release |
: 2008-12-10 |
ISBN-10 |
: 9780387096865 |
ISBN-13 |
: 0387096868 |
Rating |
: 4/5 (65 Downloads) |
Synopsis Emerging Applications of Algebraic Geometry by : Mihai Putinar
Recent advances in both the theory and implementation of computational algebraic geometry have led to new, striking applications to a variety of fields of research. The articles in this volume highlight a range of these applications and provide introductory material for topics covered in the IMA workshops on "Optimization and Control" and "Applications in Biology, Dynamics, and Statistics" held during the IMA year on Applications of Algebraic Geometry. The articles related to optimization and control focus on burgeoning use of semidefinite programming and moment matrix techniques in computational real algebraic geometry. The new direction towards a systematic study of non-commutative real algebraic geometry is well represented in the volume. Other articles provide an overview of the way computational algebra is useful for analysis of contingency tables, reconstruction of phylogenetic trees, and in systems biology. The contributions collected in this volume are accessible to non-experts, self-contained and informative; they quickly move towards cutting edge research in these areas, and provide a wealth of open problems for future research.
Author |
: Raina Robeva |
Publisher |
: Academic Press |
Total Pages |
: 383 |
Release |
: 2015-05-09 |
ISBN-10 |
: 9780128012710 |
ISBN-13 |
: 0128012714 |
Rating |
: 4/5 (10 Downloads) |
Synopsis Algebraic and Discrete Mathematical Methods for Modern Biology by : Raina Robeva
Written by experts in both mathematics and biology, Algebraic and Discrete Mathematical Methods for Modern Biology offers a bridge between math and biology, providing a framework for simulating, analyzing, predicting, and modulating the behavior of complex biological systems. Each chapter begins with a question from modern biology, followed by the description of certain mathematical methods and theory appropriate in the search of answers. Every topic provides a fast-track pathway through the problem by presenting the biological foundation, covering the relevant mathematical theory, and highlighting connections between them. Many of the projects and exercises embedded in each chapter utilize specialized software, providing students with much-needed familiarity and experience with computing applications, critical components of the "modern biology" skill set. This book is appropriate for mathematics courses such as finite mathematics, discrete structures, linear algebra, abstract/modern algebra, graph theory, probability, bioinformatics, statistics, biostatistics, and modeling, as well as for biology courses such as genetics, cell and molecular biology, biochemistry, ecology, and evolution. - Examines significant questions in modern biology and their mathematical treatments - Presents important mathematical concepts and tools in the context of essential biology - Features material of interest to students in both mathematics and biology - Presents chapters in modular format so coverage need not follow the Table of Contents - Introduces projects appropriate for undergraduate research - Utilizes freely accessible software for visualization, simulation, and analysis in modern biology - Requires no calculus as a prerequisite - Provides a complete Solutions Manual - Features a companion website with supplementary resources
Author |
: Sumio Watanabe |
Publisher |
: Cambridge University Press |
Total Pages |
: 295 |
Release |
: 2009-08-13 |
ISBN-10 |
: 9780521864671 |
ISBN-13 |
: 0521864674 |
Rating |
: 4/5 (71 Downloads) |
Synopsis Algebraic Geometry and Statistical Learning Theory by : Sumio Watanabe
Sure to be influential, Watanabe's book lays the foundations for the use of algebraic geometry in statistical learning theory. Many models/machines are singular: mixture models, neural networks, HMMs, Bayesian networks, stochastic context-free grammars are major examples. The theory achieved here underpins accurate estimation techniques in the presence of singularities.
Author |
: Gerda de Vries |
Publisher |
: SIAM |
Total Pages |
: 307 |
Release |
: 2006-07-01 |
ISBN-10 |
: 9780898718256 |
ISBN-13 |
: 0898718252 |
Rating |
: 4/5 (56 Downloads) |
Synopsis A Course in Mathematical Biology by : Gerda de Vries
This is the only book that teaches all aspects of modern mathematical modeling and that is specifically designed to introduce undergraduate students to problem solving in the context of biology. Included is an integrated package of theoretical modeling and analysis tools, computational modeling techniques, and parameter estimation and model validation methods, with a focus on integrating analytical and computational tools in the modeling of biological processes. Divided into three parts, it covers basic analytical modeling techniques; introduces computational tools used in the modeling of biological problems; and includes various problems from epidemiology, ecology, and physiology. All chapters include realistic biological examples, including many exercises related to biological questions. In addition, 25 open-ended research projects are provided, suitable for students. An accompanying Web site contains solutions and a tutorial for the implementation of the computational modeling techniques. Calculations can be done in modern computing languages such as Maple, Mathematica, and MATLAB?.
Author |
: Seth Sullivant |
Publisher |
: American Mathematical Society |
Total Pages |
: 506 |
Release |
: 2023-11-17 |
ISBN-10 |
: 9781470475109 |
ISBN-13 |
: 1470475103 |
Rating |
: 4/5 (09 Downloads) |
Synopsis Algebraic Statistics by : Seth Sullivant
Algebraic statistics uses tools from algebraic geometry, commutative algebra, combinatorics, and their computational sides to address problems in statistics and its applications. The starting point for this connection is the observation that many statistical models are semialgebraic sets. The algebra/statistics connection is now over twenty years old, and this book presents the first broad introductory treatment of the subject. Along with background material in probability, algebra, and statistics, this book covers a range of topics in algebraic statistics including algebraic exponential families, likelihood inference, Fisher's exact test, bounds on entries of contingency tables, design of experiments, identifiability of hidden variable models, phylogenetic models, and model selection. With numerous examples, references, and over 150 exercises, this book is suitable for both classroom use and independent study.