Advances in Machine Learning and Cybernetics

Advances in Machine Learning and Cybernetics
Author :
Publisher : Springer Science & Business Media
Total Pages : 1129
Release :
ISBN-10 : 9783540335849
ISBN-13 : 3540335846
Rating : 4/5 (49 Downloads)

Synopsis Advances in Machine Learning and Cybernetics by : Daniel S. Yeung

This book constitutes the thoroughly refereed post-proceedings of the 4th International Conference on Machine Learning and Cybernetics, ICMLC 2005, held in Guangzhou, China in August 2005. The 114 revised full papers of this volume are organized in topical sections on agents and distributed artificial intelligence, control, data mining and knowledge discovery, fuzzy information processing, learning and reasoning, machine learning applications, neural networks and statistical learning methods, pattern recognition, vision and image processing.

Advances in Cybernetics, Cognition, and Machine Learning for Communication Technologies

Advances in Cybernetics, Cognition, and Machine Learning for Communication Technologies
Author :
Publisher : Springer Nature
Total Pages : 593
Release :
ISBN-10 : 9789811531255
ISBN-13 : 9811531250
Rating : 4/5 (55 Downloads)

Synopsis Advances in Cybernetics, Cognition, and Machine Learning for Communication Technologies by : Vinit Kumar Gunjan

This book highlights recent advances in Cybernetics, Machine Learning and Cognitive Science applied to Communications Engineering and Technologies, and presents high-quality research conducted by experts in this area. It provides a valuable reference guide for students, researchers and industry practitioners who want to keep abreast of the latest developments in this dynamic, exciting and interesting research field of communication engineering, driven by next-generation IT-enabled techniques. The book will also benefit practitioners whose work involves the development of communication systems using advanced cybernetics, data processing, swarm intelligence and cyber-physical systems; applied mathematicians; and developers of embedded and real-time systems. Moreover, it shares insights into applying concepts from Machine Learning, Cognitive Science, Cybernetics and other areas of artificial intelligence to wireless and mobile systems, control systems and biomedical engineering.

Cybernetics, Cognition and Machine Learning Applications

Cybernetics, Cognition and Machine Learning Applications
Author :
Publisher : Springer Nature
Total Pages : 439
Release :
ISBN-10 : 9789813366916
ISBN-13 : 9813366915
Rating : 4/5 (16 Downloads)

Synopsis Cybernetics, Cognition and Machine Learning Applications by : Vinit Kumar Gunjan

This book includes the original, peer reviewed research articles from the 2nd International Conference on Cybernetics, Cognition and Machine Learning Applications (ICCCMLA 2020), held in August, 2020 at Goa, India. It covers the latest research trends or developments in areas of data science, artificial intelligence, neural networks, cognitive science and machine learning applications, cyber physical systems and cybernetics.

New Advances in Machine Learning

New Advances in Machine Learning
Author :
Publisher : BoD – Books on Demand
Total Pages : 375
Release :
ISBN-10 : 9789533070346
ISBN-13 : 953307034X
Rating : 4/5 (46 Downloads)

Synopsis New Advances in Machine Learning by : Yagang Zhang

The purpose of this book is to provide an up-to-date and systematical introduction to the principles and algorithms of machine learning. The definition of learning is broad enough to include most tasks that we commonly call “learning” tasks, as we use the word in daily life. It is also broad enough to encompass computers that improve from experience in quite straightforward ways. The book will be of interest to industrial engineers and scientists as well as academics who wish to pursue machine learning. The book is intended for both graduate and postgraduate students in fields such as computer science, cybernetics, system sciences, engineering, statistics, and social sciences, and as a reference for software professionals and practitioners. The wide scope of the book provides a good introduction to many approaches of machine learning, and it is also the source of useful bibliographical information.

Advanced Lectures on Machine Learning

Advanced Lectures on Machine Learning
Author :
Publisher : Springer
Total Pages : 249
Release :
ISBN-10 : 9783540286509
ISBN-13 : 3540286500
Rating : 4/5 (09 Downloads)

Synopsis Advanced Lectures on Machine Learning by : Olivier Bousquet

Machine Learning has become a key enabling technology for many engineering applications, investigating scientific questions and theoretical problems alike. To stimulate discussions and to disseminate new results, a summer school series was started in February 2002, the documentation of which is published as LNAI 2600. This book presents revised lectures of two subsequent summer schools held in 2003 in Canberra, Australia, and in Tübingen, Germany. The tutorial lectures included are devoted to statistical learning theory, unsupervised learning, Bayesian inference, and applications in pattern recognition; they provide in-depth overviews of exciting new developments and contain a large number of references. Graduate students, lecturers, researchers and professionals alike will find this book a useful resource in learning and teaching machine learning.

The Human Use Of Human Beings

The Human Use Of Human Beings
Author :
Publisher : Da Capo Press
Total Pages : 202
Release :
ISBN-10 : 9780306803208
ISBN-13 : 0306803208
Rating : 4/5 (08 Downloads)

Synopsis The Human Use Of Human Beings by : Norbert Wiener

Only a few books stand as landmarks in social and scientific upheaval. Norbert Wiener's classic is one in that small company. Founder of the science of cybernetics—the study of the relationship between computers and the human nervous system—Wiener was widely misunderstood as one who advocated the automation of human life. As this book reveals, his vision was much more complex and interesting. He hoped that machines would release people from relentless and repetitive drudgery in order to achieve more creative pursuits. At the same time he realized the danger of dehumanizing and displacement. His book examines the implications of cybernetics for education, law, language, science, technology, as he anticipates the enormous impact—in effect, a third industrial revolution—that the computer has had on our lives.

Advances in Machine Learning and Cybernetics

Advances in Machine Learning and Cybernetics
Author :
Publisher : Springer
Total Pages : 0
Release :
ISBN-10 : 3540335854
ISBN-13 : 9783540335856
Rating : 4/5 (54 Downloads)

Synopsis Advances in Machine Learning and Cybernetics by : Daniel S. Yeung

This book constitutes the thoroughly refereed post-proceedings of the 4th International Conference on Machine Learning and Cybernetics, ICMLC 2005, held in Guangzhou, China in August 2005. The 114 revised full papers of this volume are organized in topical sections on agents and distributed artificial intelligence, control, data mining and knowledge discovery, fuzzy information processing, learning and reasoning, machine learning applications, neural networks and statistical learning methods, pattern recognition, vision and image processing.

The Allure of Machinic Life

The Allure of Machinic Life
Author :
Publisher : MIT Press
Total Pages : 477
Release :
ISBN-10 : 9780262101264
ISBN-13 : 0262101262
Rating : 4/5 (64 Downloads)

Synopsis The Allure of Machinic Life by : John Johnston

An account of the creation of new forms of life and intelligence in cybernetics, artificial life, and artificial intelligence that analyzes both the similarities and the differences among these sciences in actualizing life.The Allure of Machinic Life

Probabilistic Machine Learning

Probabilistic Machine Learning
Author :
Publisher : MIT Press
Total Pages : 858
Release :
ISBN-10 : 9780262369305
ISBN-13 : 0262369303
Rating : 4/5 (05 Downloads)

Synopsis Probabilistic Machine Learning by : Kevin P. Murphy

A detailed and up-to-date introduction to machine learning, presented through the unifying lens of probabilistic modeling and Bayesian decision theory. This book offers a detailed and up-to-date introduction to machine learning (including deep learning) through the unifying lens of probabilistic modeling and Bayesian decision theory. The book covers mathematical background (including linear algebra and optimization), basic supervised learning (including linear and logistic regression and deep neural networks), as well as more advanced topics (including transfer learning and unsupervised learning). End-of-chapter exercises allow students to apply what they have learned, and an appendix covers notation. Probabilistic Machine Learning grew out of the author’s 2012 book, Machine Learning: A Probabilistic Perspective. More than just a simple update, this is a completely new book that reflects the dramatic developments in the field since 2012, most notably deep learning. In addition, the new book is accompanied by online Python code, using libraries such as scikit-learn, JAX, PyTorch, and Tensorflow, which can be used to reproduce nearly all the figures; this code can be run inside a web browser using cloud-based notebooks, and provides a practical complement to the theoretical topics discussed in the book. This introductory text will be followed by a sequel that covers more advanced topics, taking the same probabilistic approach.

Gaussian Processes for Machine Learning

Gaussian Processes for Machine Learning
Author :
Publisher : MIT Press
Total Pages : 266
Release :
ISBN-10 : 9780262182539
ISBN-13 : 026218253X
Rating : 4/5 (39 Downloads)

Synopsis Gaussian Processes for Machine Learning by : Carl Edward Rasmussen

A comprehensive and self-contained introduction to Gaussian processes, which provide a principled, practical, probabilistic approach to learning in kernel machines. Gaussian processes (GPs) provide a principled, practical, probabilistic approach to learning in kernel machines. GPs have received increased attention in the machine-learning community over the past decade, and this book provides a long-needed systematic and unified treatment of theoretical and practical aspects of GPs in machine learning. The treatment is comprehensive and self-contained, targeted at researchers and students in machine learning and applied statistics. The book deals with the supervised-learning problem for both regression and classification, and includes detailed algorithms. A wide variety of covariance (kernel) functions are presented and their properties discussed. Model selection is discussed both from a Bayesian and a classical perspective. Many connections to other well-known techniques from machine learning and statistics are discussed, including support-vector machines, neural networks, splines, regularization networks, relevance vector machines and others. Theoretical issues including learning curves and the PAC-Bayesian framework are treated, and several approximation methods for learning with large datasets are discussed. The book contains illustrative examples and exercises, and code and datasets are available on the Web. Appendixes provide mathematical background and a discussion of Gaussian Markov processes.