Advances in Intelligent Signal Processing and Data Mining

Advances in Intelligent Signal Processing and Data Mining
Author :
Publisher : Springer
Total Pages : 359
Release :
ISBN-10 : 9783642286964
ISBN-13 : 3642286968
Rating : 4/5 (64 Downloads)

Synopsis Advances in Intelligent Signal Processing and Data Mining by : Petia Georgieva

The book presents some of the most efficient statistical and deterministic methods for information processing and applications in order to extract targeted information and find hidden patterns. The techniques presented range from Bayesian approaches and their variations such as sequential Monte Carlo methods, Markov Chain Monte Carlo filters, Rao Blackwellization, to the biologically inspired paradigm of Neural Networks and decomposition techniques such as Empirical Mode Decomposition, Independent Component Analysis and Singular Spectrum Analysis. The book is directed to the research students, professors, researchers and practitioners interested in exploring the advanced techniques in intelligent signal processing and data mining paradigms.

Advances in Signal Processing and Intelligent Recognition Systems

Advances in Signal Processing and Intelligent Recognition Systems
Author :
Publisher : Springer Nature
Total Pages : 414
Release :
ISBN-10 : 9789811548284
ISBN-13 : 9811548285
Rating : 4/5 (84 Downloads)

Synopsis Advances in Signal Processing and Intelligent Recognition Systems by : Sabu M. Thampi

This book constitutes the refereed proceedings of the 5th International Symposium on Advances in Signal Processing and Intelligent Recognition Systems, SIRS 2019, held in Trivandrum, India, in December 2019. The 19 revised full papers and 8 revised short papers presented were carefully reviewed and selected from 63 submissions. The papers cover wide research fields including information retrieval, human-computer interaction (HCI), information extraction, speech recognition.

Advances in Signal Processing and Intelligent Recognition Systems

Advances in Signal Processing and Intelligent Recognition Systems
Author :
Publisher : Springer Science & Business Media
Total Pages : 607
Release :
ISBN-10 : 9783319049601
ISBN-13 : 3319049607
Rating : 4/5 (01 Downloads)

Synopsis Advances in Signal Processing and Intelligent Recognition Systems by : Sabu M. Thampi

This edited volume contains a selection of refereed and revised papers originally presented at the International Symposium on Signal Processing and Intelligent Recognition Systems (SIRS-2014), March 13-15, 2014, Trivandrum, India. The program committee received 134 submissions from 11 countries. Each paper was peer reviewed by at least three or more independent referees of the program committee and the 52 papers were finally selected. The papers offer stimulating insights into Pattern Recognition, Machine Learning and Knowledge-Based Systems; Signal and Speech Processing; Image and Video Processing; Mobile Computing and Applications and Computer Vision. The book is directed to the researchers and scientists engaged in various field of signal processing and related areas.

Advances in Intelligent Data Analysis and Applications

Advances in Intelligent Data Analysis and Applications
Author :
Publisher : Springer Nature
Total Pages : 379
Release :
ISBN-10 : 9789811650369
ISBN-13 : 9811650365
Rating : 4/5 (69 Downloads)

Synopsis Advances in Intelligent Data Analysis and Applications by : Jeng-Shyang Pan

This book constitutes the Proceeding of the Sixth International Conference on Intelligent Data Analysis and Applications, October 15–18, 2019, Arad, Romania. This edition is technically co-sponsored by “Aurel Vlaicu” University of Arad, Romania, Southwest Jiaotong University, Fujian University of Technology, Chang’an University, Shandong University of Science and Technology, Fujian Provincial Key Lab of Big Data Mining and Applications, and National Demonstration Center for Experimental Electronic Information and Electrical Technology Education (Fujian University of Technology), China, Romanian Academy, and General Association of Engineers in Romania - Arad Section. The book covers a range of topics: Machine Learning, Intelligent Control, Pattern Recognition, Computational Intelligence, Signal Analysis, Modeling and Visualization, Multimedia Sensing and Sensory Systems, Signal control, Imaging and Processing, Information System Security, Cryptography and Cryptanalysis, Databases and Data Mining, Information Hiding, Cloud Computing, Information Retrieval and Integration, Robotics, Control, Agents, Command, Control, Communication and Computers (C4), Swarming Technology, Sensor Technology, Smart cities. The book offers a timely, board snapshot of new development including trends and challenges that are yielding recent research directions in different areas of intelligent data analysis and applications. The book provides useful information to professors, researchers, and graduated students in area of intelligent data analysis and applications.

Intelligent Signal Processing

Intelligent Signal Processing
Author :
Publisher : Wiley-IEEE Press
Total Pages : 610
Release :
ISBN-10 : UOM:39015050503427
ISBN-13 :
Rating : 4/5 (27 Downloads)

Synopsis Intelligent Signal Processing by : Simon Haykin

"IEEE Press is proud to present the first selected reprint volume devoted to the new field of intelligent signal processing (ISP). ISP differs fundamentally from the classical approach to statistical signal processing in that the input-output behavior of a complex system is modeled by using "intelligent" or "model-free" techniques, rather than relying on the shortcomings of a mathematical model. Information is extracted from incoming signal and noise data, making few assumptions about the statistical structure of signals and their environment. Intelligent Signal Processing explores how ISP tools address the problems of practical neural systems, new signal data, and blind fuzzy approximators. The editors have compiled 20 articles written by prominent researchers covering 15 diverse, practical applications of this nascent topic, exposing the reader to the signal processing power of learning and adaptive systems. This essential reference is intended for researchers, professional engineers, and scientists working in statistical signal processing and its applications in various fields such as humanistic intelligence, stochastic resonance, financial markets, optimization, pattern recognition, signal detection, speech processing, and sensor fusion. Intelligent Signal Processing is also invaluable for graduate students and academics with a background in computer science, computer engineering, or electrical engineering. About the Editors Simon Haykin is the founding director of the Communications Research Laboratory at McMaster University, Hamilton, Ontario, Canada, where he serves as university professor. His research interests include nonlinear dynamics, neural networks and adaptive filters and their applications in radar and communications systems. Dr. Haykin is the editor for a series of books on "Adaptive and Learning Systems for Signal Processing, Communications and Control" (Publisher) and is both an IEEE Fellow and Fellow of the Royal Society of Canada. Bart Kosko is a past director of the University of Southern California's (USC) Signal and Image Processing Institute. He has authored several books, including Neural Networks and Fuzzy Systems, Neural Networks for Signal Processing (Publisher, copyright date) and Fuzzy Thinking (Publisher, copyright date), as well as the novel Nanotime (Publisher, copyright date). Dr. Kosko is an elected governor of the International Neural Network Society and has chaired many neural and fuzzy system conferences. Currently, he is associate professor of electrical engineering at USC."

Advances in Signal Processing

Advances in Signal Processing
Author :
Publisher : Springer Nature
Total Pages : 158
Release :
ISBN-10 : 9783030403126
ISBN-13 : 3030403122
Rating : 4/5 (26 Downloads)

Synopsis Advances in Signal Processing by : Margarita Favorskaya

This book attempts to improve algorithms by novel theories and complex data analysis in different scopes including object detection, remote sensing, data transmission, data fusion, gesture recognition, and medical image processing and analysis. The book is directed to the Ph.D. students, professors, researchers, and software developers working in the areas of digital video processing and computer vision technologies.

Machine Intelligence and Signal Processing

Machine Intelligence and Signal Processing
Author :
Publisher : Springer Nature
Total Pages : 464
Release :
ISBN-10 : 9789811513664
ISBN-13 : 981151366X
Rating : 4/5 (64 Downloads)

Synopsis Machine Intelligence and Signal Processing by : Sonali Agarwal

This book features selected high-quality research papers presented at the International Conference on Machine Intelligence and Signal Processing (MISP 2019), held at the Indian Institute of Technology, Allahabad, India, on September 7–10, 2019. The book covers the latest advances in the fields of machine learning, big data analytics, signal processing, computational learning theory, and their real-time applications. The topics covered include support vector machines (SVM) and variants like least-squares SVM (LS-SVM) and twin SVM (TWSVM), extreme learning machine (ELM), artificial neural network (ANN), and other areas in machine learning. Further, it discusses the real-time challenges involved in processing big data and adapting the algorithms dynamically to improve the computational efficiency. Lastly, it describes recent developments in processing signals, for instance, signals generated from IoT devices, smart systems, speech, and videos and addresses biomedical signal processing: electrocardiogram (ECG) and electroencephalogram (EEG).

Machine Intelligence and Signal Analysis

Machine Intelligence and Signal Analysis
Author :
Publisher : Springer
Total Pages : 757
Release :
ISBN-10 : 9789811309236
ISBN-13 : 981130923X
Rating : 4/5 (36 Downloads)

Synopsis Machine Intelligence and Signal Analysis by : M. Tanveer

The book covers the most recent developments in machine learning, signal analysis, and their applications. It covers the topics of machine intelligence such as: deep learning, soft computing approaches, support vector machines (SVMs), least square SVMs (LSSVMs) and their variants; and covers the topics of signal analysis such as: biomedical signals including electroencephalogram (EEG), magnetoencephalography (MEG), electrocardiogram (ECG) and electromyogram (EMG) as well as other signals such as speech signals, communication signals, vibration signals, image, and video. Further, it analyzes normal and abnormal categories of real-world signals, for example normal and epileptic EEG signals using numerous classification techniques. The book is envisioned for researchers and graduate students in Computer Science and Engineering, Electrical Engineering, Applied Mathematics, and Biomedical Signal Processing.

Machine Learning for Signal Processing

Machine Learning for Signal Processing
Author :
Publisher : Oxford University Press, USA
Total Pages : 378
Release :
ISBN-10 : 9780198714934
ISBN-13 : 0198714939
Rating : 4/5 (34 Downloads)

Synopsis Machine Learning for Signal Processing by : Max A. Little

Describes in detail the fundamental mathematics and algorithms of machine learning (an example of artificial intelligence) and signal processing, two of the most important and exciting technologies in the modern information economy. Builds up concepts gradually so that the ideas and algorithms can be implemented in practical software applications.

Hybrid Image Processing Methods for Medical Image Examination

Hybrid Image Processing Methods for Medical Image Examination
Author :
Publisher : CRC Press
Total Pages : 177
Release :
ISBN-10 : 9781000300185
ISBN-13 : 1000300188
Rating : 4/5 (85 Downloads)

Synopsis Hybrid Image Processing Methods for Medical Image Examination by : Venkatesan Rajinikanth

In view of better results expected from examination of medical datasets (images) with hybrid (integration of thresholding and segmentation) image processing methods, this work focuses on implementation of possible hybrid image examination techniques for medical images. It describes various image thresholding and segmentation methods which are essential for the development of such a hybrid processing tool. Further, this book presents the essential details, such as test image preparation, implementation of a chosen thresholding operation, evaluation of threshold image, and implementation of segmentation procedure and its evaluation, supported by pertinent case studies. Aimed at researchers/graduate students in the medical image processing domain, image processing, and computer engineering, this book: Provides broad background on various image thresholding and segmentation techniques Discusses information on various assessment metrics and the confusion matrix Proposes integration of the thresholding technique with the bio-inspired algorithms Explores case studies including MRI, CT, dermoscopy, and ultrasound images Includes separate chapters on machine learning and deep learning for medical image processing