Advances In Difference Equations And Discrete Dynamical Systems
Download Advances In Difference Equations And Discrete Dynamical Systems full books in PDF, epub, and Kindle. Read online free Advances In Difference Equations And Discrete Dynamical Systems ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads.
Author |
: Steve Baigent |
Publisher |
: Springer Nature |
Total Pages |
: 440 |
Release |
: 2021-01-04 |
ISBN-10 |
: 9783030601072 |
ISBN-13 |
: 3030601072 |
Rating |
: 4/5 (72 Downloads) |
Synopsis Progress on Difference Equations and Discrete Dynamical Systems by : Steve Baigent
This book comprises selected papers of the 25th International Conference on Difference Equations and Applications, ICDEA 2019, held at UCL, London, UK, in June 2019. The volume details the latest research on difference equations and discrete dynamical systems, and their application to areas such as biology, economics, and the social sciences. Some chapters have a tutorial style and cover the history and more recent developments for a particular topic, such as chaos, bifurcation theory, monotone dynamics, and global stability. Other chapters cover the latest personal research contributions of the author(s) in their particular area of expertise and range from the more technical articles on abstract systems to those that discuss the application of difference equations to real-world problems. The book is of interest to both Ph.D. students and researchers alike who wish to keep abreast of the latest developments in difference equations and discrete dynamical systems.
Author |
: Saber N. Elaydi |
Publisher |
: World Scientific |
Total Pages |
: 438 |
Release |
: 2010 |
ISBN-10 |
: 9789814287647 |
ISBN-13 |
: 9814287644 |
Rating |
: 4/5 (47 Downloads) |
Synopsis Discrete Dynamics and Difference Equations by : Saber N. Elaydi
This volume holds a collection of articles based on the talks presented at ICDEA 2007 in Lisbon, Portugal. The volume encompasses current topics on stability and bifurcation, chaos, mathematical biology, iteration theory, nonautonomous systems, and stochastic dynamical systems.
Author |
: Saber Elaydi |
Publisher |
: Springer |
Total Pages |
: 282 |
Release |
: 2017-11-13 |
ISBN-10 |
: 9789811064098 |
ISBN-13 |
: 9811064091 |
Rating |
: 4/5 (98 Downloads) |
Synopsis Advances in Difference Equations and Discrete Dynamical Systems by : Saber Elaydi
This volume contains the proceedings of the 22nd International Conference on Difference Equations and Applications, held at Osaka Prefecture University, Osaka, Japan, in July 2016. The conference brought together both experts and novices in the theory and applications of difference equations and discrete dynamical systems. The volume features papers in difference equations and discrete dynamical systems with applications to mathematical sciences and, in particular, mathematical biology and economics. This book will appeal to researchers, scientists, and educators who work in the fields of difference equations, discrete dynamical systems, and their applications.
Author |
: Mustafa R.S. Kulenovic |
Publisher |
: CRC Press |
Total Pages |
: 363 |
Release |
: 2002-02-27 |
ISBN-10 |
: 9781420035353 |
ISBN-13 |
: 1420035355 |
Rating |
: 4/5 (53 Downloads) |
Synopsis Discrete Dynamical Systems and Difference Equations with Mathematica by : Mustafa R.S. Kulenovic
Following the work of Yorke and Li in 1975, the theory of discrete dynamical systems and difference equations developed rapidly. The applications of difference equations also grew rapidly, especially with the introduction of graphical-interface software that can plot trajectories, calculate Lyapunov exponents, plot bifurcation diagrams, and find ba
Author |
: Saber Elaydi |
Publisher |
: Springer Nature |
Total Pages |
: 534 |
Release |
: 2023-03-25 |
ISBN-10 |
: 9783031252259 |
ISBN-13 |
: 303125225X |
Rating |
: 4/5 (59 Downloads) |
Synopsis Advances in Discrete Dynamical Systems, Difference Equations and Applications by : Saber Elaydi
This book comprises selected papers of the 26th International Conference on Difference Equations and Applications, ICDEA 2021, held virtually at the University of Sarajevo, Bosnia and Herzegovina, in July 2021. The book includes the latest and significant research and achievements in difference equations, discrete dynamical systems, and their applications in various scientific disciplines. The book is interesting for Ph.D. students and researchers who want to keep up to date with the latest research, developments, and achievements in difference equations, discrete dynamical systems, and their applications, the real-world problems.
Author |
: James D. Meiss |
Publisher |
: SIAM |
Total Pages |
: 410 |
Release |
: 2017-01-24 |
ISBN-10 |
: 9781611974645 |
ISBN-13 |
: 161197464X |
Rating |
: 4/5 (45 Downloads) |
Synopsis Differential Dynamical Systems, Revised Edition by : James D. Meiss
Differential equations are the basis for models of any physical systems that exhibit smooth change. This book combines much of the material found in a traditional course on ordinary differential equations with an introduction to the more modern theory of dynamical systems. Applications of this theory to physics, biology, chemistry, and engineering are shown through examples in such areas as population modeling, fluid dynamics, electronics, and mechanics. Differential Dynamical Systems begins with coverage of linear systems, including matrix algebra; the focus then shifts to foundational material on nonlinear differential equations, making heavy use of the contraction-mapping theorem. Subsequent chapters deal specifically with dynamical systems concepts?flow, stability, invariant manifolds, the phase plane, bifurcation, chaos, and Hamiltonian dynamics. This new edition contains several important updates and revisions throughout the book. Throughout the book, the author includes exercises to help students develop an analytical and geometrical understanding of dynamics. Many of the exercises and examples are based on applications and some involve computation; an appendix offers simple codes written in Maple, Mathematica, and MATLAB software to give students practice with computation applied to dynamical systems problems.
Author |
: Alexander I. Bobenko |
Publisher |
: American Mathematical Society |
Total Pages |
: 432 |
Release |
: 2023-09-14 |
ISBN-10 |
: 9781470474560 |
ISBN-13 |
: 1470474565 |
Rating |
: 4/5 (60 Downloads) |
Synopsis Discrete Differential Geometry by : Alexander I. Bobenko
An emerging field of discrete differential geometry aims at the development of discrete equivalents of notions and methods of classical differential geometry. The latter appears as a limit of a refinement of the discretization. Current interest in discrete differential geometry derives not only from its importance in pure mathematics but also from its applications in computer graphics, theoretical physics, architecture, and numerics. Rather unexpectedly, the very basic structures of discrete differential geometry turn out to be related to the theory of integrable systems. One of the main goals of this book is to reveal this integrable structure of discrete differential geometry. For a given smooth geometry one can suggest many different discretizations. Which one is the best? This book answers this question by providing fundamental discretization principles and applying them to numerous concrete problems. It turns out that intelligent theoretical discretizations are distinguished also by their good performance in applications. The intended audience of this book is threefold. It is a textbook on discrete differential geometry and integrable systems suitable for a one semester graduate course. On the other hand, it is addressed to specialists in geometry and mathematical physics. It reflects the recent progress in discrete differential geometry and contains many original results. The third group of readers at which this book is targeted is formed by specialists in geometry processing, computer graphics, architectural design, numerical simulations, and animation. They may find here answers to the question “How do we discretize differential geometry?” arising in their specific field. Prerequisites for reading this book include standard undergraduate background (calculus and linear algebra). No knowledge of differential geometry is expected, although some familiarity with curves and surfaces can be helpful.
Author |
: Martin Bohner |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 354 |
Release |
: 2011-06-28 |
ISBN-10 |
: 9780817682309 |
ISBN-13 |
: 0817682309 |
Rating |
: 4/5 (09 Downloads) |
Synopsis Advances in Dynamic Equations on Time Scales by : Martin Bohner
Excellent introductory material on the calculus of time scales and dynamic equations.; Numerous examples and exercises illustrate the diverse application of dynamic equations on time scales.; Unified and systematic exposition of the topics allows good transitions from chapter to chapter.; Contributors include Anderson, M. Bohner, Davis, Dosly, Eloe, Erbe, Guseinov, Henderson, Hilger, Hilscher, Kaymakcalan, Lakshmikantham, Mathsen, and A. Peterson, founders and leaders of this field of study.; Useful as a comprehensive resource of time scales and dynamic equations for pure and applied mathematicians.; Comprehensive bibliography and index complete this text.
Author |
: Gerald Teschl |
Publisher |
: American Mathematical Society |
Total Pages |
: 370 |
Release |
: 2024-01-12 |
ISBN-10 |
: 9781470476410 |
ISBN-13 |
: 147047641X |
Rating |
: 4/5 (10 Downloads) |
Synopsis Ordinary Differential Equations and Dynamical Systems by : Gerald Teschl
This book provides a self-contained introduction to ordinary differential equations and dynamical systems suitable for beginning graduate students. The first part begins with some simple examples of explicitly solvable equations and a first glance at qualitative methods. Then the fundamental results concerning the initial value problem are proved: existence, uniqueness, extensibility, dependence on initial conditions. Furthermore, linear equations are considered, including the Floquet theorem, and some perturbation results. As somewhat independent topics, the Frobenius method for linear equations in the complex domain is established and Sturm–Liouville boundary value problems, including oscillation theory, are investigated. The second part introduces the concept of a dynamical system. The Poincaré–Bendixson theorem is proved, and several examples of planar systems from classical mechanics, ecology, and electrical engineering are investigated. Moreover, attractors, Hamiltonian systems, the KAM theorem, and periodic solutions are discussed. Finally, stability is studied, including the stable manifold and the Hartman–Grobman theorem for both continuous and discrete systems. The third part introduces chaos, beginning with the basics for iterated interval maps and ending with the Smale–Birkhoff theorem and the Melnikov method for homoclinic orbits. The text contains almost three hundred exercises. Additionally, the use of mathematical software systems is incorporated throughout, showing how they can help in the study of differential equations.
Author |
: Randall J. LeVeque |
Publisher |
: SIAM |
Total Pages |
: 356 |
Release |
: 2007-01-01 |
ISBN-10 |
: 0898717833 |
ISBN-13 |
: 9780898717839 |
Rating |
: 4/5 (33 Downloads) |
Synopsis Finite Difference Methods for Ordinary and Partial Differential Equations by : Randall J. LeVeque
This book introduces finite difference methods for both ordinary differential equations (ODEs) and partial differential equations (PDEs) and discusses the similarities and differences between algorithm design and stability analysis for different types of equations. A unified view of stability theory for ODEs and PDEs is presented, and the interplay between ODE and PDE analysis is stressed. The text emphasizes standard classical methods, but several newer approaches also are introduced and are described in the context of simple motivating examples.