Advanced Neural Computers
Download Advanced Neural Computers full books in PDF, epub, and Kindle. Read online free Advanced Neural Computers ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads.
Author |
: R. Eckmiller |
Publisher |
: Elsevier |
Total Pages |
: 464 |
Release |
: 2014-06-28 |
ISBN-10 |
: 9781483294278 |
ISBN-13 |
: 1483294277 |
Rating |
: 4/5 (78 Downloads) |
Synopsis Advanced Neural Computers by : R. Eckmiller
This book is the outcome of the International Symposium on Neural Networks for Sensory and Motor Systems (NSMS) held in March 1990 in the FRG. The NSMS symposium assembled 45 invited experts from Europe, America and Japan representing the fields of Neuroinformatics, Computer Science, Computational Neuroscience, and Neuroscience.As a rapidly-published report on the state of the art in Neural Computing it forms a reference book for future research in this highly interdisciplinary field and should prove useful in the endeavor to transfer concepts of brain function and structure to novel neural computers with adaptive, dynamical neural net topologies.A feature of the book is the completeness of the references provided. An alphabetical list of all references quoted in the papers is given, as well as a separate list of general references to help newcomers to the field. A subject index and author index also facilitate access to various details.
Author |
: Philip D. Wasserman |
Publisher |
: Van Nostrand Reinhold Company |
Total Pages |
: 280 |
Release |
: 1993 |
ISBN-10 |
: UOM:39015029904201 |
ISBN-13 |
: |
Rating |
: 4/5 (01 Downloads) |
Synopsis Advanced Methods in Neural Computing by : Philip D. Wasserman
This is the engineer's guide to artificial neural networks, the advanced computing innovation which is posed to sweep into the world of business and industry. The author presents the basic principles and advanced concepts by means of high-performance paradigms which function effectively in real-world situations.
Author |
: Haijun Zhang |
Publisher |
: Springer Nature |
Total Pages |
: 542 |
Release |
: 2020-08-12 |
ISBN-10 |
: 9789811576706 |
ISBN-13 |
: 981157670X |
Rating |
: 4/5 (06 Downloads) |
Synopsis Neural Computing for Advanced Applications by : Haijun Zhang
This book presents refereed proceedings of the First International Conference on Neural Computing for Advanced Applications, NCAA 2020, held in July, 2020. Due to the COVID-19 pandemic the conference was held online. The 36 full papers and 7 short papers were thorougly reviewed and selected from a total of 113 qualified submissions. The papers present resent research on such topics as neural network theory, and cognitive sciences, machine learning, data mining, data security & privacy protection, and data-driven applications, computational intelligence, nature-inspired optimizers, and their engineering applications, cloud/edge/fog computing, the Internet of Things/Vehicles (IoT/IoV), and their system optimization, control systems, network synchronization, system integration, and industrial artificial intelligence, fuzzy logic, neuro-fuzzy systems, decision making, and their applications in management sciences, computer vision, image processing, and their industrial applications, and natural language processing, machine translation, knowledge graphs, and their applications.
Author |
: Rajalingappaa Shanmugamani |
Publisher |
: Packt Publishing Ltd |
Total Pages |
: 304 |
Release |
: 2018-01-23 |
ISBN-10 |
: 9781788293358 |
ISBN-13 |
: 1788293355 |
Rating |
: 4/5 (58 Downloads) |
Synopsis Deep Learning for Computer Vision by : Rajalingappaa Shanmugamani
Learn how to model and train advanced neural networks to implement a variety of Computer Vision tasks Key Features Train different kinds of deep learning model from scratch to solve specific problems in Computer Vision Combine the power of Python, Keras, and TensorFlow to build deep learning models for object detection, image classification, similarity learning, image captioning, and more Includes tips on optimizing and improving the performance of your models under various constraints Book Description Deep learning has shown its power in several application areas of Artificial Intelligence, especially in Computer Vision. Computer Vision is the science of understanding and manipulating images, and finds enormous applications in the areas of robotics, automation, and so on. This book will also show you, with practical examples, how to develop Computer Vision applications by leveraging the power of deep learning. In this book, you will learn different techniques related to object classification, object detection, image segmentation, captioning, image generation, face analysis, and more. You will also explore their applications using popular Python libraries such as TensorFlow and Keras. This book will help you master state-of-the-art, deep learning algorithms and their implementation. What you will learn Set up an environment for deep learning with Python, TensorFlow, and Keras Define and train a model for image and video classification Use features from a pre-trained Convolutional Neural Network model for image retrieval Understand and implement object detection using the real-world Pedestrian Detection scenario Learn about various problems in image captioning and how to overcome them by training images and text together Implement similarity matching and train a model for face recognition Understand the concept of generative models and use them for image generation Deploy your deep learning models and optimize them for high performance Who this book is for This book is targeted at data scientists and Computer Vision practitioners who wish to apply the concepts of Deep Learning to overcome any problem related to Computer Vision. A basic knowledge of programming in Python—and some understanding of machine learning concepts—is required to get the best out of this book.
Author |
: Timothy Masters |
Publisher |
: |
Total Pages |
: 456 |
Release |
: 1995-04-17 |
ISBN-10 |
: UOM:39015037287482 |
ISBN-13 |
: |
Rating |
: 4/5 (82 Downloads) |
Synopsis Advanced Algorithms for Neural Networks by : Timothy Masters
This is one of the first books to offer practical in-depth coverage of the Probabilistic Neural Network (PNN) and several other neural nets and their related algorithms critical to solving some of today's toughest real-world computing problems. Includes complete C++ source code for basic and advanced applications.
Author |
: Robert Kozma |
Publisher |
: Academic Press |
Total Pages |
: 398 |
Release |
: 2023-10-11 |
ISBN-10 |
: 9780323958165 |
ISBN-13 |
: 0323958168 |
Rating |
: 4/5 (65 Downloads) |
Synopsis Artificial Intelligence in the Age of Neural Networks and Brain Computing by : Robert Kozma
Artificial Intelligence in the Age of Neural Networks and Brain Computing, Second Edition demonstrates that present disruptive implications and applications of AI is a development of the unique attributes of neural networks, mainly machine learning, distributed architectures, massive parallel processing, black-box inference, intrinsic nonlinearity, and smart autonomous search engines. The book covers the major basic ideas of "brain-like computing" behind AI, provides a framework to deep learning, and launches novel and intriguing paradigms as possible future alternatives. The present success of AI-based commercial products proposed by top industry leaders, such as Google, IBM, Microsoft, Intel, and Amazon, can be interpreted using the perspective presented in this book by viewing the co-existence of a successful synergism among what is referred to as computational intelligence, natural intelligence, brain computing, and neural engineering. The new edition has been updated to include major new advances in the field, including many new chapters. - Developed from the 30th anniversary of the International Neural Network Society (INNS) and the 2017 International Joint Conference on Neural Networks (IJCNN - Authored by top experts, global field pioneers, and researchers working on cutting-edge applications in signal processing, speech recognition, games, adaptive control and decision-making - Edited by high-level academics and researchers in intelligent systems and neural networks - Includes all new chapters, including topics such as Frontiers in Recurrent Neural Network Research; Big Science, Team Science, Open Science for Neuroscience; A Model-Based Approach for Bridging Scales of Cortical Activity; A Cognitive Architecture for Object Recognition in Video; How Brain Architecture Leads to Abstract Thought; Deep Learning-Based Speech Separation and Advances in AI, Neural Networks
Author |
: E. R. Davies |
Publisher |
: Academic Press |
Total Pages |
: 584 |
Release |
: 2021-11-09 |
ISBN-10 |
: 9780128221495 |
ISBN-13 |
: 0128221496 |
Rating |
: 4/5 (95 Downloads) |
Synopsis Advanced Methods and Deep Learning in Computer Vision by : E. R. Davies
Advanced Methods and Deep Learning in Computer Vision presents advanced computer vision methods, emphasizing machine and deep learning techniques that have emerged during the past 5–10 years. The book provides clear explanations of principles and algorithms supported with applications. Topics covered include machine learning, deep learning networks, generative adversarial networks, deep reinforcement learning, self-supervised learning, extraction of robust features, object detection, semantic segmentation, linguistic descriptions of images, visual search, visual tracking, 3D shape retrieval, image inpainting, novelty and anomaly detection. This book provides easy learning for researchers and practitioners of advanced computer vision methods, but it is also suitable as a textbook for a second course on computer vision and deep learning for advanced undergraduates and graduate students. - Provides an important reference on deep learning and advanced computer methods that was created by leaders in the field - Illustrates principles with modern, real-world applications - Suitable for self-learning or as a text for graduate courses
Author |
: Christopher M. Bishop |
Publisher |
: Oxford University Press |
Total Pages |
: 501 |
Release |
: 1995-11-23 |
ISBN-10 |
: 9780198538646 |
ISBN-13 |
: 0198538642 |
Rating |
: 4/5 (46 Downloads) |
Synopsis Neural Networks for Pattern Recognition by : Christopher M. Bishop
Statistical pattern recognition; Probability density estimation; Single-layer networks; The multi-layer perceptron; Radial basis functions; Error functions; Parameter optimization algorithms; Pre-processing and feature extraction; Learning and generalization; Bayesian techniques; Appendix; References; Index.
Author |
: Gerasimos G. Rigatos |
Publisher |
: Springer |
Total Pages |
: 296 |
Release |
: 2014-08-27 |
ISBN-10 |
: 9783662437643 |
ISBN-13 |
: 3662437643 |
Rating |
: 4/5 (43 Downloads) |
Synopsis Advanced Models of Neural Networks by : Gerasimos G. Rigatos
This book provides a complete study on neural structures exhibiting nonlinear and stochastic dynamics, elaborating on neural dynamics by introducing advanced models of neural networks. It overviews the main findings in the modelling of neural dynamics in terms of electrical circuits and examines their stability properties with the use of dynamical systems theory. It is suitable for researchers and postgraduate students engaged with neural networks and dynamical systems theory.
Author |
: Pijush Samui |
Publisher |
: Academic Press |
Total Pages |
: 660 |
Release |
: 2017-07-18 |
ISBN-10 |
: 9780128113196 |
ISBN-13 |
: 0128113197 |
Rating |
: 4/5 (96 Downloads) |
Synopsis Handbook of Neural Computation by : Pijush Samui
Handbook of Neural Computation explores neural computation applications, ranging from conventional fields of mechanical and civil engineering, to electronics, electrical engineering and computer science. This book covers the numerous applications of artificial and deep neural networks and their uses in learning machines, including image and speech recognition, natural language processing and risk analysis. Edited by renowned authorities in this field, this work is comprised of articles from reputable industry and academic scholars and experts from around the world. Each contributor presents a specific research issue with its recent and future trends. As the demand rises in the engineering and medical industries for neural networks and other machine learning methods to solve different types of operations, such as data prediction, classification of images, analysis of big data, and intelligent decision-making, this book provides readers with the latest, cutting-edge research in one comprehensive text. - Features high-quality research articles on multivariate adaptive regression splines, the minimax probability machine, and more - Discusses machine learning techniques, including classification, clustering, regression, web mining, information retrieval and natural language processing - Covers supervised, unsupervised, reinforced, ensemble, and nature-inspired learning methods