Advanced and Optimization Based Sliding Mode Control: Theory and Applications

Advanced and Optimization Based Sliding Mode Control: Theory and Applications
Author :
Publisher : SIAM
Total Pages : 302
Release :
ISBN-10 : 9781611975840
ISBN-13 : 1611975840
Rating : 4/5 (40 Downloads)

Synopsis Advanced and Optimization Based Sliding Mode Control: Theory and Applications by : Antonella Ferrara

A compendium of the authors’ recently published results, this book discusses sliding mode control of uncertain nonlinear systems, with a particular emphasis on advanced and optimization based algorithms. The authors survey classical sliding mode control theory and introduce four new methods of advanced sliding mode control. They analyze classical theory and advanced algorithms, with numerical results complementing the theoretical treatment. Case studies examine applications of the algorithms to complex robotics and power grid problems. Advanced and Optimization Based Sliding Mode Control: Theory and Applications is the first book to systematize the theory of optimization based higher order sliding mode control and illustrate advanced algorithms and their applications to real problems. It presents systematic treatment of event-triggered and model based event-triggered sliding mode control schemes, including schemes in combination with model predictive control, and presents adaptive algorithms as well as algorithms capable of dealing with state and input constraints. Additionally, the book includes simulations and experimental results obtained by applying the presented control strategies to real complex systems. This book is suitable for students and researchers interested in control theory. It will also be attractive to practitioners interested in implementing the illustrated strategies. It is accessible to anyone with a basic knowledge of control engineering, process physics, and applied mathematics.

Advances and Applications in Sliding Mode Control systems

Advances and Applications in Sliding Mode Control systems
Author :
Publisher : Springer
Total Pages : 592
Release :
ISBN-10 : 9783319111735
ISBN-13 : 3319111736
Rating : 4/5 (35 Downloads)

Synopsis Advances and Applications in Sliding Mode Control systems by : Ahmad Taher Azar

This book describes the advances and applications in Sliding mode control (SMC) which is widely used as a powerful method to tackle uncertain nonlinear systems. The book is organized into 21 chapters which have been organised by the editors to reflect the various themes of sliding mode control. The book provides the reader with a broad range of material from first principles up to the current state of the art in the area of SMC and observation presented in a clear, matter-of-fact style. As such it is appropriate for graduate students with a basic knowledge of classical control theory and some knowledge of state-space methods and nonlinear systems. The resulting design procedures are emphasized using Matlab/Simulink software.

Advances in Discrete-Time Sliding Mode Control

Advances in Discrete-Time Sliding Mode Control
Author :
Publisher : CRC Press
Total Pages : 315
Release :
ISBN-10 : 9781351470476
ISBN-13 : 1351470477
Rating : 4/5 (76 Downloads)

Synopsis Advances in Discrete-Time Sliding Mode Control by : Ahmadreza Argha

The focus of this book is on the design of a specific control strategy using digital computers. This control strategy referred to as Sliding Mode Control (SMC), has its roots in (continuous-time) relay control. This book aims to explain recent investigations' output in the field of discrete-time sliding mode control (DSMC). The book starts by explaining a new robust LMI-based (state-feedback and observer-based output-feedback) DSMC including a new scheme for sparsely distributed control. It includes a novel event-driven control mechanism, called actuator-based event-driven scheme, using a synchronized-rate biofeedback system for heart rate regulation during cycle-ergometer. Key Features: Focuses on LMI-based SMC (sliding mode control) for uncertain discrete-time system using novel nonlinear components in the control law Makes reader understand the techniques of designing a discrete controller based on the flexible sliding functions Proposes new algorithms for sparsifying control and observer network through multi-objective optimization frameworks Discusses a framework for the design of SMC for two-dimensional systems along with analyzing the controllability of two-dimensional systems Discusses novel schemes for sparsifying the control network

Advanced Sliding Mode Control for Mechanical Systems

Advanced Sliding Mode Control for Mechanical Systems
Author :
Publisher : Springer Science & Business Media
Total Pages : 367
Release :
ISBN-10 : 9783642209079
ISBN-13 : 3642209076
Rating : 4/5 (79 Downloads)

Synopsis Advanced Sliding Mode Control for Mechanical Systems by : Jinkun Liu

"Advanced Sliding Mode Control for Mechanical Systems: Design, Analysis and MATLAB Simulation" takes readers through the basic concepts, covering the most recent research in sliding mode control. The book is written from the perspective of practical engineering and examines numerous classical sliding mode controllers, including continuous time sliding mode control, discrete time sliding mode control, fuzzy sliding mode control, neural sliding mode control, backstepping sliding mode control, dynamic sliding mode control, sliding mode control based on observer, terminal sliding mode control, sliding mode control for robot manipulators, and sliding mode control for aircraft. This book is intended for engineers and researchers working in the field of control. Dr. Jinkun Liu works at Beijing University of Aeronautics and Astronautics and Dr. Xinhua Wang works at the National University of Singapore.

Advanced Control Design with Application to Electromechanical Systems

Advanced Control Design with Application to Electromechanical Systems
Author :
Publisher : Butterworth-Heinemann
Total Pages : 390
Release :
ISBN-10 : 9780128145449
ISBN-13 : 0128145447
Rating : 4/5 (49 Downloads)

Synopsis Advanced Control Design with Application to Electromechanical Systems by : Magdi S. Mahmoud

Advanced Control Design with Application to Electromechanical Systems represents the continuing effort in the pursuit of analytic theory and rigorous design for robust control methods. The book provides an overview of the feedback control systems and their associated definitions, with discussions on finite dimension vector spaces, mappings and convex analysis. In addition, a comprehensive treatment of continuous control system design is presented, along with an introduction to control design topics pertaining to discrete-time systems. Other sections introduces linear H1 and H2 theory, dissipativity analysis and synthesis, and a wide spectrum of models pertaining to electromechanical systems. Finally, the book examines the theory and mathematical analysis of multiagent systems. Researchers on robust control theory and electromechanical systems and graduate students working on robust control will benefit greatly from this book. - Introduces a coherent and unified framework for studying robust control theory - Provides the control-theoretic background required to read and contribute to the research literature - Presents the main ideas and demonstrations of the major results of robust control theory - Includes MATLAB codes to implement during research

Sliding Mode Control of Switching Power Converters

Sliding Mode Control of Switching Power Converters
Author :
Publisher : CRC Press
Total Pages : 295
Release :
ISBN-10 : 9781439830260
ISBN-13 : 1439830266
Rating : 4/5 (60 Downloads)

Synopsis Sliding Mode Control of Switching Power Converters by : Siew-Chong Tan

Sliding Mode Control of Switching Power Converters: Techniques and Implementation is perhaps the first in-depth account of how sliding mode controllers can be practically engineered to optimize control of power converters. A complete understanding of this process is timely and necessary, as the electronics industry moves toward the use of renewable energy sources and widely varying loads that can be adequately supported only by power converters using nonlinear controllers. Of the various advanced control methods used to handle the complex requirements of power conversion systems, sliding mode control (SMC) has been most widely investigated and proved to be a more feasible alternative than fuzzy and adaptive control for existing and future power converters. Bridging the gap between power electronics and control theory, this book employs a top-down instructional approach to discuss traditional and modern SMC techniques. Covering everything from equations to analog implantation, it: Provides a comprehensive general overview of SMC principles and methods Offers advanced readers a systematic exposition of the mathematical machineries and design principles relevant to construction of SMC, then introduces newer approaches Demonstrates the practical implementation and supporting design rules of SMC, based on analog circuits Promotes an appreciation of general nonlinear control by presenting it from a practical perspective and using familiar engineering terminology With specialized coverage of modeling and implementation that is useful to students and professionals in electrical and electronic engineering, this book clarifies SMC principles and their application to power converters. Making the material equally accessible to all readers, whether their background is in analog circuit design, power electronics, or control engineering, the authors—experienced researchers in their own right—elegantly and practically relate theory, application, and mathematical concepts and models to corresponding industrial targets.

Advanced H∞ Control

Advanced H∞ Control
Author :
Publisher : Birkhäuser
Total Pages : 218
Release :
ISBN-10 : 1493902938
ISBN-13 : 9781493902934
Rating : 4/5 (38 Downloads)

Synopsis Advanced H∞ Control by : Yury V. Orlov

This compact monograph is focused on disturbance attenuation in nonsmooth dynamic systems, developing an H∞ approach in the nonsmooth setting. Similar to the standard nonlinear H∞ approach, the proposed nonsmooth design guarantees both the internal asymptotic stability of a nominal closed-loop system and the dissipativity inequality, which states that the size of an error signal is uniformly bounded with respect to the worst-case size of an external disturbance signal. This guarantee is achieved by constructing an energy or storage function that satisfies the dissipativity inequality and is then utilized as a Lyapunov function to ensure the internal stability requirements. Advanced H∞ Control is unique in the literature for its treatment of disturbance attenuation in nonsmooth systems. It synthesizes various tools, including Hamilton–Jacobi–Isaacs partial differential inequalities as well as Linear Matrix Inequalities. Along with the finite-dimensional treatment, the synthesis is extended to infinite-dimensional setting, involving time-delay and distributed parameter systems. To help illustrate this synthesis, the book focuses on electromechanical applications with nonsmooth phenomena caused by dry friction, backlash, and sampled-data measurements. Special attention is devoted to implementation issues. Requiring familiarity with nonlinear systems theory, this book will be accessible to graduate students interested in systems analysis and design, and is a welcome addition to the literature for researchers and practitioners in these areas.

Sliding Mode Control Using MATLAB

Sliding Mode Control Using MATLAB
Author :
Publisher : Academic Press
Total Pages : 348
Release :
ISBN-10 : 9780128026700
ISBN-13 : 0128026707
Rating : 4/5 (00 Downloads)

Synopsis Sliding Mode Control Using MATLAB by : Jinkun Liu

Sliding Mode Control Using MATLAB provides many sliding mode controller design examples, along with simulation examples and MATLAB® programs. Following the review of sliding mode control, the book includes sliding mode control for continuous systems, robust adaptive sliding mode control, sliding mode control for underactuated systems, backstepping, and dynamic surface sliding mode control, sliding mode control based on filter and observer, sliding mode control for discrete systems, fuzzy sliding mode control, neural network sliding mode control, and sliding mode control for robot manipulators. The contents of each chapter are independent, providing readers with information they can use for their own needs. It is suitable for the readers who work on mechanical and electronic engineering, electrical automation engineering, etc., and can also be used as a teaching reference for universities. - Provides many sliding mode controller design examples to help readers solve their research and design problems - Includes various, implementable, robust sliding mode control design solutions from engineering applications - Provides the simulation examples and MATLAB programs for each sliding mode control algorithm

Sliding Mode Control In Engineering

Sliding Mode Control In Engineering
Author :
Publisher : CRC Press
Total Pages : 440
Release :
ISBN-10 : 0203910850
ISBN-13 : 9780203910856
Rating : 4/5 (50 Downloads)

Synopsis Sliding Mode Control In Engineering by : Wilfrid Perruquetti

Provides comprehensive coverage of the most recent developments in the theory of non-Archimedean pseudo-differential equations and its application to stochastics and mathematical physics--offering current methods of construction for stochastic processes in the field of p-adic numbers and related structures. Develops a new theory for parabolic equat

Road Map for Sliding Mode Control Design

Road Map for Sliding Mode Control Design
Author :
Publisher : Springer Nature
Total Pages : 134
Release :
ISBN-10 : 9783030417093
ISBN-13 : 3030417093
Rating : 4/5 (93 Downloads)

Synopsis Road Map for Sliding Mode Control Design by : Vadim Utkin

This book is devoted to control of finite and infinite dimensional processes with continuous-time and discrete time control, focusing on suppression problems and new methods of adaptation applicable for systems with sliding motions only. Special mathematical methods are needed for all the listed control tasks. These methods are addressed in the initial chapters, with coverage of the definition of the multidimensional sliding modes, the derivation of the differential equations of those motions, and the existence conditions. Subsequent chapters discusses various areas of further research. The book reflects the consensus view of the authors regarding the current status of SMC theory. It is addressed to a broad spectrum of engineers and theoreticians working in diverse areas of control theory and applications. It is well suited for use in graduate and postgraduate courses in such university programs as Electrical Engineering, Control of Nonlinear Systems, and Mechanical Engineering.