Adaptive Design Theory and Implementation Using SAS and R

Adaptive Design Theory and Implementation Using SAS and R
Author :
Publisher : CRC Press
Total Pages : 442
Release :
ISBN-10 : 9781584889632
ISBN-13 : 1584889632
Rating : 4/5 (32 Downloads)

Synopsis Adaptive Design Theory and Implementation Using SAS and R by : Mark Chang

Adaptive design has become an important tool in modern pharmaceutical research and development. Compared to a classic trial design with static features, an adaptive design allows for the modification of the characteristics of ongoing trials based on cumulative information. Adaptive designs increase the probability of success, reduce costs and the t

Adaptive Design Theory and Implementation Using SAS and R

Adaptive Design Theory and Implementation Using SAS and R
Author :
Publisher : CRC Press
Total Pages : 689
Release :
ISBN-10 : 9781482256604
ISBN-13 : 1482256606
Rating : 4/5 (04 Downloads)

Synopsis Adaptive Design Theory and Implementation Using SAS and R by : Mark Chang

Get Up to Speed on Many Types of Adaptive DesignsSince the publication of the first edition, there have been remarkable advances in the methodology and application of adaptive trials. Incorporating many of these new developments, Adaptive Design Theory and Implementation Using SAS and R, Second Edition offers a detailed framework to understand the

Adaptive Design Theory and Implementation Using SAS and R, Second Edition

Adaptive Design Theory and Implementation Using SAS and R, Second Edition
Author :
Publisher : CRC Press
Total Pages : 709
Release :
ISBN-10 : 9781482256598
ISBN-13 : 1482256592
Rating : 4/5 (98 Downloads)

Synopsis Adaptive Design Theory and Implementation Using SAS and R, Second Edition by : Mark Chang

Get Up to Speed on Many Types of Adaptive Designs Since the publication of the first edition, there have been remarkable advances in the methodology and application of adaptive trials. Incorporating many of these new developments, Adaptive Design Theory and Implementation Using SAS and R, Second Edition offers a detailed framework to understand the use of various adaptive design methods in clinical trials. New to the Second Edition Twelve new chapters covering blinded and semi-blinded sample size reestimation design, pick-the-winners design, biomarker-informed adaptive design, Bayesian designs, adaptive multiregional trial design, SAS and R for group sequential design, and much more More analytical methods for K-stage adaptive designs, multiple-endpoint adaptive design, survival modeling, and adaptive treatment switching New material on sequential parallel designs with rerandomization and the skeleton approach in adaptive dose-escalation trials Twenty new SAS macros and R functions Enhanced end-of-chapter problems that give readers hands-on practice addressing issues encountered in designing real-life adaptive trials Covering even more adaptive designs, this book provides biostatisticians, clinical scientists, and regulatory reviewers with up-to-date details on this innovative area in pharmaceutical research and development. Practitioners will be able to improve the efficiency of their trial design, thereby reducing the time and cost of drug development.

Adaptive Design Methods in Clinical Trials

Adaptive Design Methods in Clinical Trials
Author :
Publisher : CRC Press
Total Pages : 368
Release :
ISBN-10 : 9781439839881
ISBN-13 : 1439839883
Rating : 4/5 (81 Downloads)

Synopsis Adaptive Design Methods in Clinical Trials by : Shein-Chung Chow

With new statistical and scientific issues arising in adaptive clinical trial design, including the U.S. FDA's recent draft guidance, a new edition of one of the first books on the topic is needed. Adaptive Design Methods in Clinical Trials, Second Edition reflects recent developments and regulatory positions on the use of adaptive designs in clini

Modern Approaches to Clinical Trials Using SAS

Modern Approaches to Clinical Trials Using SAS
Author :
Publisher : SAS Institute
Total Pages : 496
Release :
ISBN-10 : 9781629600826
ISBN-13 : 1629600822
Rating : 4/5 (26 Downloads)

Synopsis Modern Approaches to Clinical Trials Using SAS by : Sandeep Menon

Get the tools you need to use SAS® in clinical trial design! Unique and multifaceted, Modern Approaches to Clinical Trials Using SAS: Classical, Adaptive, and Bayesian Methods, edited by Sandeep M. Menon and Richard C. Zink, thoroughly covers several domains of modern clinical trial design: classical, group sequential, adaptive, and Bayesian methods that are applicable to and widely used in various phases of pharmaceutical development. Written for biostatisticians, pharmacometricians, clinical developers, and statistical programmers involved in the design, analysis, and interpretation of clinical trials, as well as students in graduate and postgraduate programs in statistics or biostatistics, the book touches on a wide variety of topics, including dose-response and dose-escalation designs; sequential methods to stop trials early for overwhelming efficacy, safety, or futility; Bayesian designs that incorporate historical data; adaptive sample size re-estimation; adaptive randomization to allocate subjects to more effective treatments; and population enrichment designs. Methods are illustrated using clinical trials from diverse therapeutic areas, including dermatology, endocrinology, infectious disease, neurology, oncology, and rheumatology. Individual chapters are authored by renowned contributors, experts, and key opinion leaders from the pharmaceutical/medical device industry or academia. Numerous real-world examples and sample SAS code enable users to readily apply novel clinical trial design and analysis methodologies in practice.

Monte Carlo Simulation for the Pharmaceutical Industry

Monte Carlo Simulation for the Pharmaceutical Industry
Author :
Publisher : CRC Press
Total Pages : 566
Release :
ISBN-10 : 9781439835937
ISBN-13 : 1439835934
Rating : 4/5 (37 Downloads)

Synopsis Monte Carlo Simulation for the Pharmaceutical Industry by : Mark Chang

Helping you become a creative, logical thinker and skillful "simulator," Monte Carlo Simulation for the Pharmaceutical Industry: Concepts, Algorithms, and Case Studies provides broad coverage of the entire drug development process, from drug discovery to preclinical and clinical trial aspects to commercialization. It presents the theories and metho

Sample Size Calculations in Clinical Research

Sample Size Calculations in Clinical Research
Author :
Publisher : CRC Press
Total Pages : 825
Release :
ISBN-10 : 9781351727112
ISBN-13 : 1351727117
Rating : 4/5 (12 Downloads)

Synopsis Sample Size Calculations in Clinical Research by : Shein-Chung Chow

Praise for the Second Edition: "... this is a useful, comprehensive compendium of almost every possible sample size formula. The strong organization and carefully defined formulae will aid any researcher designing a study." -Biometrics "This impressive book contains formulae for computing sample size in a wide range of settings. One-sample studies and two-sample comparisons for quantitative, binary, and time-to-event outcomes are covered comprehensively, with separate sample size formulae for testing equality, non-inferiority, and equivalence. Many less familiar topics are also covered ..." – Journal of the Royal Statistical Society Sample Size Calculations in Clinical Research, Third Edition presents statistical procedures for performing sample size calculations during various phases of clinical research and development. A comprehensive and unified presentation of statistical concepts and practical applications, this book includes a well-balanced summary of current and emerging clinical issues, regulatory requirements, and recently developed statistical methodologies for sample size calculation. Features: Compares the relative merits and disadvantages of statistical methods for sample size calculations Explains how the formulae and procedures for sample size calculations can be used in a variety of clinical research and development stages Presents real-world examples from several therapeutic areas, including cardiovascular medicine, the central nervous system, anti-infective medicine, oncology, and women’s health Provides sample size calculations for dose response studies, microarray studies, and Bayesian approaches This new edition is updated throughout, includes many new sections, and five new chapters on emerging topics: two stage seamless adaptive designs, cluster randomized trial design, zero-inflated Poisson distribution, clinical trials with extremely low incidence rates, and clinical trial simulation.

Innovative Strategies, Statistical Solutions and Simulations for Modern Clinical Trials

Innovative Strategies, Statistical Solutions and Simulations for Modern Clinical Trials
Author :
Publisher : CRC Press
Total Pages : 376
Release :
ISBN-10 : 9781351214537
ISBN-13 : 1351214535
Rating : 4/5 (37 Downloads)

Synopsis Innovative Strategies, Statistical Solutions and Simulations for Modern Clinical Trials by : Mark Chang

"This is truly an outstanding book. [It] brings together all of the latest research in clinical trials methodology and how it can be applied to drug development.... Chang et al provide applications to industry-supported trials. This will allow statisticians in the industry community to take these methods seriously." Jay Herson, Johns Hopkins University The pharmaceutical industry's approach to drug discovery and development has rapidly transformed in the last decade from the more traditional Research and Development (R & D) approach to a more innovative approach in which strategies are employed to compress and optimize the clinical development plan and associated timelines. However, these strategies are generally being considered on an individual trial basis and not as part of a fully integrated overall development program. Such optimization at the trial level is somewhat near-sighted and does not ensure cost, time, or development efficiency of the overall program. This book seeks to address this imbalance by establishing a statistical framework for overall/global clinical development optimization and providing tactics and techniques to support such optimization, including clinical trial simulations. Provides a statistical framework for achieve global optimization in each phase of the drug development process. Describes specific techniques to support optimization including adaptive designs, precision medicine, survival-endpoints, dose finding and multiple testing. Gives practical approaches to handling missing data in clinical trials using SAS. Looks at key controversial issues from both a clinical and statistical perspective. Presents a generous number of case studies from multiple therapeutic areas that help motivate and illustrate the statistical methods introduced in the book. Puts great emphasis on software implementation of the statistical methods with multiple examples of software code (both SAS and R). It is important for statisticians to possess a deep knowledge of the drug development process beyond statistical considerations. For these reasons, this book incorporates both statistical and "clinical/medical" perspectives.

Group Sequential and Confirmatory Adaptive Designs in Clinical Trials

Group Sequential and Confirmatory Adaptive Designs in Clinical Trials
Author :
Publisher : Springer
Total Pages : 310
Release :
ISBN-10 : 9783319325620
ISBN-13 : 3319325620
Rating : 4/5 (20 Downloads)

Synopsis Group Sequential and Confirmatory Adaptive Designs in Clinical Trials by : Gernot Wassmer

This book provides an up-to-date review of the general principles of and techniques for confirmatory adaptive designs. Confirmatory adaptive designs are a generalization of group sequential designs. With these designs, interim analyses are performed in order to stop the trial prematurely under control of the Type I error rate. In adaptive designs, it is also permissible to perform a data-driven change of relevant aspects of the study design at interim stages. This includes, for example, a sample-size reassessment, a treatment-arm selection or a selection of a pre-specified sub-population. Essentially, this adaptive methodology was introduced in the 1990s. Since then, it has become popular and the object of intense discussion and still represents a rapidly growing field of statistical research. This book describes adaptive design methodology at an elementary level, while also considering designing and planning issues as well as methods for analyzing an adaptively planned trial. This includes estimation methods and methods for the determination of an overall p-value. Part I of the book provides the group sequential methods that are necessary for understanding and applying the adaptive design methodology supplied in Parts II and III of the book. The book contains many examples that illustrate use of the methods for practical application. The book is primarily written for applied statisticians from academia and industry who are interested in confirmatory adaptive designs. It is assumed that readers are familiar with the basic principles of descriptive statistics, parameter estimation and statistical testing. This book will also be suitable for an advanced statistical course for applied statisticians or clinicians with a sound statistical background.

Applied Biclustering Methods for Big and High-Dimensional Data Using R

Applied Biclustering Methods for Big and High-Dimensional Data Using R
Author :
Publisher : CRC Press
Total Pages : 433
Release :
ISBN-10 : 9781315356396
ISBN-13 : 1315356392
Rating : 4/5 (96 Downloads)

Synopsis Applied Biclustering Methods for Big and High-Dimensional Data Using R by : Adetayo Kasim

Proven Methods for Big Data Analysis As big data has become standard in many application areas, challenges have arisen related to methodology and software development, including how to discover meaningful patterns in the vast amounts of data. Addressing these problems, Applied Biclustering Methods for Big and High-Dimensional Data Using R shows how to apply biclustering methods to find local patterns in a big data matrix. The book presents an overview of data analysis using biclustering methods from a practical point of view. Real case studies in drug discovery, genetics, marketing research, biology, toxicity, and sports illustrate the use of several biclustering methods. References to technical details of the methods are provided for readers who wish to investigate the full theoretical background. All the methods are accompanied with R examples that show how to conduct the analyses. The examples, software, and other materials are available on a supplementary website.