2D Semiconductor Materials and Devices

2D Semiconductor Materials and Devices
Author :
Publisher : Elsevier
Total Pages : 339
Release :
ISBN-10 : 9780128165898
ISBN-13 : 0128165898
Rating : 4/5 (98 Downloads)

Synopsis 2D Semiconductor Materials and Devices by : Dongzhi Chi

2D Semiconductor Materials and Devices reviews the basic science and state-of-art technology of 2D semiconductor materials and devices. Chapters discuss the basic structure and properties of 2D semiconductor materials, including both elemental (silicene, phosphorene) and compound semiconductors (transition metal dichalcogenide), the current growth and characterization methods of these 2D materials, state-of-the-art devices, and current and potential applications. - Reviews a broad range of emerging 2D electronic materials beyond graphene, including silicene, phosphorene and compound semiconductors - Provides an in-depth review of material properties, growth and characterization aspects—topics that could enable applications - Features contributions from the leading experts in the field

2D Materials

2D Materials
Author :
Publisher : Cambridge University Press
Total Pages : 521
Release :
ISBN-10 : 9781316738139
ISBN-13 : 1316738132
Rating : 4/5 (39 Downloads)

Synopsis 2D Materials by : Phaedon Avouris

Learn about the most recent advances in 2D materials with this comprehensive and accessible text. Providing all the necessary materials science and physics background, leading experts discuss the fundamental properties of a wide range of 2D materials, and their potential applications in electronic, optoelectronic and photonic devices. Several important classes of materials are covered, from more established ones such as graphene, hexagonal boron nitride, and transition metal dichalcogenides, to new and emerging materials such as black phosphorus, silicene, and germanene. Readers will gain an in-depth understanding of the electronic structure and optical, thermal, mechanical, vibrational, spin and plasmonic properties of each material, as well as the different techniques that can be used for their synthesis. Presenting a unified perspective on 2D materials, this is an excellent resource for graduate students, researchers and practitioners working in nanotechnology, nanoelectronics, nanophotonics, condensed matter physics, and chemistry.

2D Materials for Nanoelectronics

2D Materials for Nanoelectronics
Author :
Publisher : CRC Press
Total Pages : 472
Release :
ISBN-10 : 9781498704182
ISBN-13 : 1498704182
Rating : 4/5 (82 Downloads)

Synopsis 2D Materials for Nanoelectronics by : Michel Houssa

Major developments in the semiconductor industry are on the horizon through the use of two-dimensional (2D) materials, such as graphene and transition metal dichalcogenides, for integrated circuits (ICs). 2D Materials for Nanoelectronics is the first comprehensive treatment of these materials and their applications in nanoelectronic devices.Compris

Integration of 2D Materials for Electronics Applications

Integration of 2D Materials for Electronics Applications
Author :
Publisher : MDPI
Total Pages : 265
Release :
ISBN-10 : 9783038976066
ISBN-13 : 3038976067
Rating : 4/5 (66 Downloads)

Synopsis Integration of 2D Materials for Electronics Applications by : Filippo Giannazzo

This book is a printed edition of the Special Issue "Integration of 2D Materials for Electronics Applications" that was published in Crystals

2D Monoelemental Materials (Xenes) and Related Technologies

2D Monoelemental Materials (Xenes) and Related Technologies
Author :
Publisher : CRC Press
Total Pages : 166
Release :
ISBN-10 : 9781000562842
ISBN-13 : 1000562840
Rating : 4/5 (42 Downloads)

Synopsis 2D Monoelemental Materials (Xenes) and Related Technologies by : Zongyu Huang

Monoelemental 2D materials called Xenes have a graphene-like structure, intra-layer covalent bond, and weak van der Waals forces between layers. Materials composed of different groups of elements have different structures and rich properties, making Xenes materials a potential candidate for the next generation of 2D materials. 2D Monoelemental Materials (Xenes) and Related Technologies: Beyond Graphene describes the structure, properties, and applications of Xenes by classification and section. The first section covers the structure and classification of single-element 2D materials, according to the different main groups of monoelemental materials of different components and includes the properties and applications with detailed description. The second section discusses the structure, properties, and applications of advanced 2D Xenes materials, which are composed of heterogeneous structures, produced by defects, and regulated by the field. Features include: Systematically detailed single element materials according to the main groups of the constituent elements Classification of the most effective and widely studied 2D Xenes materials Expounding upon changes in properties and improvements in applications by different regulation mechanisms Discussion of the significance of 2D single-element materials where structural characteristics are closely combined with different preparation methods and the relevant theoretical properties complement each other with practical applications Aimed at researchers and advanced students in materials science and engineering, this book offers a broad view of current knowledge in the emerging and promising field of 2D monoelemental materials.

Anisotropic 2D Materials and Devices

Anisotropic 2D Materials and Devices
Author :
Publisher : Royal Society of Chemistry
Total Pages : 186
Release :
ISBN-10 : 9781839162916
ISBN-13 : 1839162910
Rating : 4/5 (16 Downloads)

Synopsis Anisotropic 2D Materials and Devices by : Yuerui Lu

Presenting recent progress in anisotropic 2D materials research, reader is introduced to phosphorene and its arsenic alloys, monochalcogenides of group IV elements in the form of MX (M = Ge, Sn and X = S, Se, Te), low-symmetry transition-metal dichalcogenide (TMD) materials such as rhenium disulphide (ReS2) and rhenium diselenide (ReSe2), and organic 2D materials. Providing detailed synthesis protocols and characterization techniques for these various anisotropic 2D materials, readers will learn their specific technological scopes for next generation electronics, optoelectronics and biomedical applications, challenges and future directions. Edited by an leading expert, contributors cover enhanced many-body interactions and high binding energy 1D particle dynamics to showcase design of high-performance optoelectronic devices; anisotropic polariton for designing polariton based laser systems; applications in bio-imaging, cancer diagnosis and therapies, drug delivery and release, and antibacterial performance; and finally, their potential in nano-electro-mechanical devices. Considering all these areas in detail, this book is a useful reference to the scientific communities working in related research fields, especially for materials scientists, chemists, physicists and electronics/electrical/energy engineers. This book may also be of use to those in chemical academia and industry more broadly.

2D Semiconducting Materials for Electronic, Photonic, and Optoelectronic Devices

2D Semiconducting Materials for Electronic, Photonic, and Optoelectronic Devices
Author :
Publisher : CRC Press
Total Pages : 335
Release :
ISBN-10 : 9781040113585
ISBN-13 : 1040113583
Rating : 4/5 (85 Downloads)

Synopsis 2D Semiconducting Materials for Electronic, Photonic, and Optoelectronic Devices by : Anuj Kumar

Two-dimensional semiconducting materials (2D-SCMs) are the subject of intensive study in the fields of photonics and optoelectronics because of their unusual optical, electrical, thermal, and mechanical properties. The main objective of 2D Semiconducting Materials for Electronic, Photonic, and Optoelectronic Devices is to provide current, state-of-the-art knowledge of two-dimensional semiconducting materials for various applications. Two-dimensional semiconducting materials are the basic building blocks for making photodiodes, light-emitting diodes, light-detecting devices, data storage, telecommunications, and energy-storage devices. When it comes to two-dimensional semiconducting materials, electronic, photonic, and optoelectronic applications, as well as future plans for improving performance, no modern book covers as much ground. The planned book will fill such gaps by offering a comprehensive analysis of two-dimensional semiconducting materials. This book covers a range of advanced 2D materials, their fundamentals, and the chemistry for many emerging applications. All the chapters are covered by experts in these areas around the world, making this a suitable textbook for students and providing new guidelines to researchers and industries. • Covers topics such as fundamentals and advanced knowledge of two-dimensional semiconducting materials • Provides details about the recent methods used for the synthesis, characterization, and applications of two-dimensional semiconducting materials • Covers the state-of-the-art development in two-dimensional semiconducting materials and their emerging applications This book provides directions to students, scientists, and researchers in semiconductors and related disciplines to help them better understand the physics, characteristics, and applications of 2D semiconductors.

Quantum Physics of Semiconductor Materials and Devices

Quantum Physics of Semiconductor Materials and Devices
Author :
Publisher : Oxford University Press
Total Pages : 896
Release :
ISBN-10 : 9780192598929
ISBN-13 : 0192598929
Rating : 4/5 (29 Downloads)

Synopsis Quantum Physics of Semiconductor Materials and Devices by : Debdeep Jena

”Quantum Phenomena do not occur in a Hilbert space. They occur in a laboratory”. - Asher Peres Semiconductor physics is a laboratory to learn and discover the concepts of quantum mechanics and thermodynamics, condensed matter physics, and materials science, and the payoffs are almost immediate in the form of useful semiconductor devices. Debdeep Jena has had the opportunity to work on both sides of the fence - on the fundamental materials science and quantum physics of semiconductors, and in their applications in semiconductor electronic and photonic devices. In Quantum Physics of Semiconductors and Nanostructures, Jena uses this experience to make each topic as tangible and accessible as possible to students at all levels. Consider the simplest physical processes that occur in semiconductors: electron or hole transport in bands and over barriers, collision of electrons with the atoms in the crystal, or when electrons and holes annihilate each other to produce a photon. The correct explanation of these processes require a quantum mechanical treatment. Any shortcuts lead to misconceptions that can take years to dispel, and sometimes become roadblocks towards a deeper understanding and appreciation of the richness of the subject. A typical introductory course on semiconductor physics would then require prerequisites of quantum mechanics, statistical physics and thermodynamics, materials science, and electromagnetism. Rarely would a student have all this background when (s)he takes a course of this nature in most universities. Jena's work fills in these gaps and gives students the background and deeper understanding of the quantum physics of semiconductors and nanostructures.

Emerging 2D Materials and Devices for the Internet of Things

Emerging 2D Materials and Devices for the Internet of Things
Author :
Publisher : Elsevier
Total Pages : 349
Release :
ISBN-10 : 9780128183878
ISBN-13 : 012818387X
Rating : 4/5 (78 Downloads)

Synopsis Emerging 2D Materials and Devices for the Internet of Things by : Li Tao

Emerging 2D Materials and Devices for the Internet of Things: Information, Sensing and Energy Applications summarizes state-of-the-art technologies in applying 2D layered materials, discusses energy and sensing device applications as essential infrastructure solutions, and explores designs that will make internet-of-things devices faster, more reliable and more accessible for the creation of mass-market products. The book focuses on information, energy and sensing applications, showing how different types of 2D materials are being used to create a new generation of products and devices that harness the capabilities of wireless technology in an eco-efficient, reliable way. This book is an important resource for both materials scientists and engineers, who are designing new wireless products in a variety of industry sectors. - Explores how 2D materials are being used to create faster and more reliable wireless network solutions - Discusses how graphene-based nanocomposites are being used for energy harvesting and storage applications - Outlines the major challenges for integrating 2D materials in electronic sensing devices

2D Nanoscale Heterostructured Materials

2D Nanoscale Heterostructured Materials
Author :
Publisher : Elsevier
Total Pages : 285
Release :
ISBN-10 : 9780128176795
ISBN-13 : 0128176792
Rating : 4/5 (95 Downloads)

Synopsis 2D Nanoscale Heterostructured Materials by : Satyabrata Jit

2D Nanoscale Heterostructured Materials: Synthesis, Properties, and Applications assesses the current status and future prospects for 2D materials other than graphene (e.g., BN nanosheets, MoS2, NbSe2, WS2, etc.) that have already been contemplated for both low-end and high-end technological applications. The book offers an overview of the different synthesis techniques for 2D materials and their heterostructures, with a detailed explanation of the many potential future applications. It provides an informed overview and fundamentals properties related to the 2D Transition metal dichalcogenide materials and their heterostructures. The book helps researchers to understand the progress of this field and points the way to future research in this area. - Explores synthesis techniques of newly evolved 2D materials and their heterostructures with controlled properties - Offers detailed analysis of the fundamental properties (via various experimental process and simulations techniques) of 2D heterostructures materials - Discusses the applications of 2D heterostructured materials in various high-performance devices