Artificial Intelligence with Uncertainty

Artificial Intelligence with Uncertainty
Author :
Publisher : CRC Press
Total Pages : 311
Release :
ISBN-10 : 9781498776271
ISBN-13 : 1498776272
Rating : 4/5 (71 Downloads)

Synopsis Artificial Intelligence with Uncertainty by : Deyi Li

This book develops a framework that shows how uncertainty in Artificial Intelligence (AI) expands and generalizes traditional AI. It explores the uncertainties of knowledge and intelligence. The authors focus on the importance of natural language – the carrier of knowledge and intelligence, and introduce efficient physical methods for data mining amd control. In this new edition, we have more in-depth description of the models and methods, of which the mathematical properties are proved strictly which make these theories and methods more complete. The authors also highlight their latest research results.

Uncertainty in Artificial Intelligence

Uncertainty in Artificial Intelligence
Author :
Publisher : Morgan Kaufmann
Total Pages : 554
Release :
ISBN-10 : 9781483214511
ISBN-13 : 1483214516
Rating : 4/5 (11 Downloads)

Synopsis Uncertainty in Artificial Intelligence by : David Heckerman

Uncertainty in Artificial Intelligence contains the proceedings of the Ninth Conference on Uncertainty in Artificial Intelligence held at the Catholic University of America in Washington, DC, on July 9-11, 1993. The papers focus on methods of reasoning and decision making under uncertainty as applied to problems in artificial intelligence (AI) and cover topics ranging from knowledge acquisition and automated model construction to learning, planning, temporal reasoning, and machine vision. Comprised of 66 chapters, this book begins with a discussion on causality in Bayesian belief networks before turning to a decision theoretic account of conditional ought statements that rectifies glaring deficiencies in classical deontic logic and forms a sound basis for qualitative decision theory. Subsequent chapters explore trade-offs in constructing and evaluating temporal influence diagrams; normative engineering risk management systems; additive belief-network models; and sensitivity analysis for probability assessments in Bayesian networks. Automated model construction and learning as well as algorithms for inference and decision making are also considered. This monograph will be of interest to both students and practitioners in the fields of AI and computer science.

Uncertainty and Vagueness in Knowledge Based Systems

Uncertainty and Vagueness in Knowledge Based Systems
Author :
Publisher : Springer Science & Business Media
Total Pages : 495
Release :
ISBN-10 : 9783642767029
ISBN-13 : 3642767028
Rating : 4/5 (29 Downloads)

Synopsis Uncertainty and Vagueness in Knowledge Based Systems by : Rudolf Kruse

The primary aim of this monograph is to provide a formal framework for the representation and management of uncertainty and vagueness in the field of artificial intelligence. It puts particular emphasis on a thorough analysis of these phenomena and on the development of sound mathematical modeling approaches. Beyond this theoretical basis the scope of the book includes also implementational aspects and a valuation of existing models and systems. The fundamental ambition of this book is to show that vagueness and un certainty can be handled adequately by using measure-theoretic methods. The presentation of applicable knowledge representation formalisms and reasoning algorithms substantiates the claim that efficiency requirements do not necessar ily require renunciation of an uncompromising mathematical modeling. These results are used to evaluate systems based on probabilistic methods as well as on non-standard concepts such as certainty factors, fuzzy sets or belief functions. The book is intended to be self-contained and addresses researchers and practioneers in the field of knowledge based systems. It is in particular suit able as a textbook for graduate-level students in AI, operations research and applied probability. A solid mathematical background is necessary for reading this book. Essential parts of the material have been the subject of courses given by the first author for students of computer science and mathematics held since 1984 at the University in Braunschweig.

Computer Information Systems and Industrial Management

Computer Information Systems and Industrial Management
Author :
Publisher : Springer
Total Pages : 541
Release :
ISBN-10 : 9783642409257
ISBN-13 : 3642409253
Rating : 4/5 (57 Downloads)

Synopsis Computer Information Systems and Industrial Management by : Khalid Saeed

This book constitutes the proceedings of the 12th IFIP TC 8 International Conference, CISIM 2013, held in Cracow, Poland, in September 2013. The 44 papers presented in this volume were carefully reviewed and selected from over 60 submissions. They are organized in topical sections on biometric and biomedical applications; pattern recognition and image processing; various aspects of computer security, networking, algorithms, and industrial applications. The book also contains full papers of a keynote speech and the invited talk.

Subjective Logic

Subjective Logic
Author :
Publisher : Springer
Total Pages : 355
Release :
ISBN-10 : 9783319423371
ISBN-13 : 3319423371
Rating : 4/5 (71 Downloads)

Synopsis Subjective Logic by : Audun Jøsang

This is the first comprehensive treatment of subjective logic and all its operations. The author developed the approach, and in this book he first explains subjective opinions, opinion representation, and decision-making under vagueness and uncertainty, and he then offers a full definition of subjective logic, harmonising the key notations and formalisms, concluding with chapters on trust networks and subjective Bayesian networks, which when combined form general subjective networks. The author shows how real-world situations can be realistically modelled with regard to how situations are perceived, with conclusions that more correctly reflect the ignorance and uncertainties that result from partially uncertain input arguments. The book will help researchers and practitioners to advance, improve and apply subjective logic to build powerful artificial reasoning models and tools for solving real-world problems. A good grounding in discrete mathematics is a prerequisite.

Uncertainty in Artificial Intelligence

Uncertainty in Artificial Intelligence
Author :
Publisher : North Holland
Total Pages : 509
Release :
ISBN-10 : 0444700587
ISBN-13 : 9780444700582
Rating : 4/5 (87 Downloads)

Synopsis Uncertainty in Artificial Intelligence by : Laveen N. Kanal

Hardbound. How to deal with uncertainty is a subject of much controversy in Artificial Intelligence. This volume brings together a wide range of perspectives on uncertainty, many of the contributors being the principal proponents in the controversy.Some of the notable issues which emerge from these papers revolve around an interval-based calculus of uncertainty, the Dempster-Shafer Theory, and probability as the best numeric model for uncertainty. There remain strong dissenting opinions not only about probability but even about the utility of any numeric method in this context.

Uncertainty for Safe Utilization of Machine Learning in Medical Imaging, and Graphs in Biomedical Image Analysis

Uncertainty for Safe Utilization of Machine Learning in Medical Imaging, and Graphs in Biomedical Image Analysis
Author :
Publisher : Springer Nature
Total Pages : 233
Release :
ISBN-10 : 9783030603656
ISBN-13 : 3030603652
Rating : 4/5 (56 Downloads)

Synopsis Uncertainty for Safe Utilization of Machine Learning in Medical Imaging, and Graphs in Biomedical Image Analysis by : Carole H. Sudre

This book constitutes the refereed proceedings of the Second International Workshop on Uncertainty for Safe Utilization of Machine Learning in Medical Imaging, UNSURE 2020, and the Third International Workshop on Graphs in Biomedical Image Analysis, GRAIL 2020, held in conjunction with MICCAI 2020, in Lima, Peru, in October 2020. The workshops were held virtually due to the COVID-19 pandemic. For UNSURE 2020, 10 papers from 18 submissions were accepted for publication. They focus on developing awareness and encouraging research in the field of uncertainty modelling to enable safe implementation of machine learning tools in the clinical world. GRAIL 2020 accepted 10 papers from the 12 submissions received. The workshop aims to bring together scientists that use and develop graph-based models for the analysis of biomedical images and to encourage the exploration of graph-based models for difficult clinical problems within a variety of biomedical imaging contexts.

Uncertainty for Safe Utilization of Machine Learning in Medical Imaging and Clinical Image-Based Procedures

Uncertainty for Safe Utilization of Machine Learning in Medical Imaging and Clinical Image-Based Procedures
Author :
Publisher : Springer Nature
Total Pages : 202
Release :
ISBN-10 : 9783030326890
ISBN-13 : 3030326896
Rating : 4/5 (90 Downloads)

Synopsis Uncertainty for Safe Utilization of Machine Learning in Medical Imaging and Clinical Image-Based Procedures by : Hayit Greenspan

This book constitutes the refereed proceedings of the First International Workshop on Uncertainty for Safe Utilization of Machine Learning in Medical Imaging, UNSURE 2019, and the 8th International Workshop on Clinical Image-Based Procedures, CLIP 2019, held in conjunction with MICCAI 2019, in Shenzhen, China, in October 2019. For UNSURE 2019, 8 papers from 15 submissions were accepted for publication. They focus on developing awareness and encouraging research in the field of uncertainty modelling to enable safe implementation of machine learning tools in the clinical world. CLIP 2019 accepted 11 papers from the 15 submissions received. The workshops provides a forum for work centred on specific clinical applications, including techniques and procedures based on comprehensive clinical image and other data.

The Death of Uncertainty

The Death of Uncertainty
Author :
Publisher :
Total Pages :
Release :
ISBN-10 : 1641374020
ISBN-13 : 9781641374026
Rating : 4/5 (20 Downloads)

Synopsis The Death of Uncertainty by : Michael Tan

The Alignment Problem: Machine Learning and Human Values

The Alignment Problem: Machine Learning and Human Values
Author :
Publisher : W. W. Norton & Company
Total Pages : 459
Release :
ISBN-10 : 9780393635836
ISBN-13 : 039363583X
Rating : 4/5 (36 Downloads)

Synopsis The Alignment Problem: Machine Learning and Human Values by : Brian Christian

A jaw-dropping exploration of everything that goes wrong when we build AI systems and the movement to fix them. Today’s “machine-learning” systems, trained by data, are so effective that we’ve invited them to see and hear for us—and to make decisions on our behalf. But alarm bells are ringing. Recent years have seen an eruption of concern as the field of machine learning advances. When the systems we attempt to teach will not, in the end, do what we want or what we expect, ethical and potentially existential risks emerge. Researchers call this the alignment problem. Systems cull résumés until, years later, we discover that they have inherent gender biases. Algorithms decide bail and parole—and appear to assess Black and White defendants differently. We can no longer assume that our mortgage application, or even our medical tests, will be seen by human eyes. And as autonomous vehicles share our streets, we are increasingly putting our lives in their hands. The mathematical and computational models driving these changes range in complexity from something that can fit on a spreadsheet to a complex system that might credibly be called “artificial intelligence.” They are steadily replacing both human judgment and explicitly programmed software. In best-selling author Brian Christian’s riveting account, we meet the alignment problem’s “first-responders,” and learn their ambitious plan to solve it before our hands are completely off the wheel. In a masterful blend of history and on-the ground reporting, Christian traces the explosive growth in the field of machine learning and surveys its current, sprawling frontier. Readers encounter a discipline finding its legs amid exhilarating and sometimes terrifying progress. Whether they—and we—succeed or fail in solving the alignment problem will be a defining human story. The Alignment Problem offers an unflinching reckoning with humanity’s biases and blind spots, our own unstated assumptions and often contradictory goals. A dazzlingly interdisciplinary work, it takes a hard look not only at our technology but at our culture—and finds a story by turns harrowing and hopeful.