Number Theory and Geometry: An Introduction to Arithmetic Geometry

Number Theory and Geometry: An Introduction to Arithmetic Geometry
Author :
Publisher : American Mathematical Soc.
Total Pages : 506
Release :
ISBN-10 : 9781470450168
ISBN-13 : 147045016X
Rating : 4/5 (68 Downloads)

Synopsis Number Theory and Geometry: An Introduction to Arithmetic Geometry by : Álvaro Lozano-Robledo

Geometry and the theory of numbers are as old as some of the oldest historical records of humanity. Ever since antiquity, mathematicians have discovered many beautiful interactions between the two subjects and recorded them in such classical texts as Euclid's Elements and Diophantus's Arithmetica. Nowadays, the field of mathematics that studies the interactions between number theory and algebraic geometry is known as arithmetic geometry. This book is an introduction to number theory and arithmetic geometry, and the goal of the text is to use geometry as the motivation to prove the main theorems in the book. For example, the fundamental theorem of arithmetic is a consequence of the tools we develop in order to find all the integral points on a line in the plane. Similarly, Gauss's law of quadratic reciprocity and the theory of continued fractions naturally arise when we attempt to determine the integral points on a curve in the plane given by a quadratic polynomial equation. After an introduction to the theory of diophantine equations, the rest of the book is structured in three acts that correspond to the study of the integral and rational solutions of linear, quadratic, and cubic curves, respectively. This book describes many applications including modern applications in cryptography; it also presents some recent results in arithmetic geometry. With many exercises, this book can be used as a text for a first course in number theory or for a subsequent course on arithmetic (or diophantine) geometry at the junior-senior level.

Set Theory: The Structure of Arithmetic

Set Theory: The Structure of Arithmetic
Author :
Publisher : Courier Dover Publications
Total Pages : 289
Release :
ISBN-10 : 9780486830476
ISBN-13 : 0486830470
Rating : 4/5 (76 Downloads)

Synopsis Set Theory: The Structure of Arithmetic by : Norman T. Hamilton

This text is formulated on the fundamental idea that much of mathematics, including the classical number systems, can best be based on set theory. 1961 edition.

Higher Arithmetic

Higher Arithmetic
Author :
Publisher : American Mathematical Soc.
Total Pages : 228
Release :
ISBN-10 : 0821844393
ISBN-13 : 9780821844397
Rating : 4/5 (93 Downloads)

Synopsis Higher Arithmetic by : Harold M. Edwards

Among the topics featured in this textbook are: congruences; the fundamental theorem of arithmetic; exponentiation and orders; primality testing; the RSA cipher system; polynomials; modules of hypernumbers; signatures of equivalence classes; and the theory of binary quadratic forms. The book contains exercises with answers.

A Conversational Introduction to Algebraic Number Theory

A Conversational Introduction to Algebraic Number Theory
Author :
Publisher : American Mathematical Soc.
Total Pages : 329
Release :
ISBN-10 : 9781470436537
ISBN-13 : 1470436531
Rating : 4/5 (37 Downloads)

Synopsis A Conversational Introduction to Algebraic Number Theory by : Paul Pollack

Gauss famously referred to mathematics as the “queen of the sciences” and to number theory as the “queen of mathematics”. This book is an introduction to algebraic number theory, meaning the study of arithmetic in finite extensions of the rational number field Q . Originating in the work of Gauss, the foundations of modern algebraic number theory are due to Dirichlet, Dedekind, Kronecker, Kummer, and others. This book lays out basic results, including the three “fundamental theorems”: unique factorization of ideals, finiteness of the class number, and Dirichlet's unit theorem. While these theorems are by now quite classical, both the text and the exercises allude frequently to more recent developments. In addition to traversing the main highways, the book reveals some remarkable vistas by exploring scenic side roads. Several topics appear that are not present in the usual introductory texts. One example is the inclusion of an extensive discussion of the theory of elasticity, which provides a precise way of measuring the failure of unique factorization. The book is based on the author's notes from a course delivered at the University of Georgia; pains have been taken to preserve the conversational style of the original lectures.

The Theory of Algebraic Numbers: Second Edition

The Theory of Algebraic Numbers: Second Edition
Author :
Publisher : American Mathematical Soc.
Total Pages : 175
Release :
ISBN-10 : 9781614440093
ISBN-13 : 1614440093
Rating : 4/5 (93 Downloads)

Synopsis The Theory of Algebraic Numbers: Second Edition by : Harry Pollard

This monograph makes available, in English, the elementary parts of classical algebraic number theory. This second edition follows closely the plan and style of the first edition. The principal changes are the correction of misprints, the expansion or simplification of some arguments, and the omission of the final chapter on units in order to make way for the introduction of some two hundred problems.

Classical Theory of Arithmetic Functions

Classical Theory of Arithmetic Functions
Author :
Publisher : Routledge
Total Pages : 416
Release :
ISBN-10 : 9781351460514
ISBN-13 : 135146051X
Rating : 4/5 (14 Downloads)

Synopsis Classical Theory of Arithmetic Functions by : R Sivaramakrishnan

This volume focuses on the classical theory of number-theoretic functions emphasizing algebraic and multiplicative techniques. It contains many structure theorems basic to the study of arithmetic functions, including several previously unpublished proofs. The author is head of the Dept. of Mathemati

Lectures on Number Theory

Lectures on Number Theory
Author :
Publisher : American Mathematical Soc.
Total Pages : 297
Release :
ISBN-10 : 9780821820179
ISBN-13 : 0821820176
Rating : 4/5 (79 Downloads)

Synopsis Lectures on Number Theory by : Peter Gustav Lejeune Dirichlet

Lectures on Number Theory is the first of its kind on the subject matter. It covers most of the topics that are standard in a modern first course on number theory, but also includes Dirichlet's famous results on class numbers and primes in arithmetic progressions.

Theory of Arithmetic

Theory of Arithmetic
Author :
Publisher :
Total Pages : 360
Release :
ISBN-10 : MINN:31951000559738M
ISBN-13 :
Rating : 4/5 (8M Downloads)

Synopsis Theory of Arithmetic by : John A. Peterson

Introduction to the Arithmetic Theory of Automorphic Functions

Introduction to the Arithmetic Theory of Automorphic Functions
Author :
Publisher : Princeton University Press
Total Pages : 292
Release :
ISBN-10 : 0691080925
ISBN-13 : 9780691080925
Rating : 4/5 (25 Downloads)

Synopsis Introduction to the Arithmetic Theory of Automorphic Functions by : Gorō Shimura

The theory of automorphic forms is playing increasingly important roles in several branches of mathematics, even in physics, and is almost ubiquitous in number theory. This book introduces the reader to the subject and in particular to elliptic modular forms with emphasis on their number-theoretical aspects. After two chapters geared toward elementary levels, there follows a detailed treatment of the theory of Hecke operators, which associate zeta functions to modular forms. At a more advanced level, complex multiplication of elliptic curves and abelian varieties is discussed. The main question is the construction of abelian extensions of certain algebraic number fields, which is traditionally called "Hilbert's twelfth problem." Another advanced topic is the determination of the zeta function of an algebraic curve uniformized by modular functions, which supplies an indispensable background for the recent proof of Fermat's last theorem by Wiles.

Advanced Topics in the Arithmetic of Elliptic Curves

Advanced Topics in the Arithmetic of Elliptic Curves
Author :
Publisher : Springer Science & Business Media
Total Pages : 482
Release :
ISBN-10 : 9781461208518
ISBN-13 : 1461208513
Rating : 4/5 (18 Downloads)

Synopsis Advanced Topics in the Arithmetic of Elliptic Curves by : Joseph H. Silverman

In the introduction to the first volume of The Arithmetic of Elliptic Curves (Springer-Verlag, 1986), I observed that "the theory of elliptic curves is rich, varied, and amazingly vast," and as a consequence, "many important topics had to be omitted." I included a brief introduction to ten additional topics as an appendix to the first volume, with the tacit understanding that eventually there might be a second volume containing the details. You are now holding that second volume. it turned out that even those ten topics would not fit Unfortunately, into a single book, so I was forced to make some choices. The following material is covered in this book: I. Elliptic and modular functions for the full modular group. II. Elliptic curves with complex multiplication. III. Elliptic surfaces and specialization theorems. IV. Neron models, Kodaira-Neron classification of special fibers, Tate's algorithm, and Ogg's conductor-discriminant formula. V. Tate's theory of q-curves over p-adic fields. VI. Neron's theory of canonical local height functions.