The Structure Of Lie Groups
Download The Structure Of Lie Groups full books in PDF, epub, and Kindle. Read online free The Structure Of Lie Groups ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads.
Author |
: Joachim Hilgert |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 742 |
Release |
: 2011-11-06 |
ISBN-10 |
: 9780387847948 |
ISBN-13 |
: 0387847944 |
Rating |
: 4/5 (48 Downloads) |
Synopsis Structure and Geometry of Lie Groups by : Joachim Hilgert
This self-contained text is an excellent introduction to Lie groups and their actions on manifolds. The authors start with an elementary discussion of matrix groups, followed by chapters devoted to the basic structure and representation theory of finite dimensinal Lie algebras. They then turn to global issues, demonstrating the key issue of the interplay between differential geometry and Lie theory. Special emphasis is placed on homogeneous spaces and invariant geometric structures. The last section of the book is dedicated to the structure theory of Lie groups. Particularly, they focus on maximal compact subgroups, dense subgroups, complex structures, and linearity. This text is accessible to a broad range of mathematicians and graduate students; it will be useful both as a graduate textbook and as a research reference.
Author |
: Brian Hall |
Publisher |
: Springer |
Total Pages |
: 452 |
Release |
: 2015-05-11 |
ISBN-10 |
: 9783319134673 |
ISBN-13 |
: 3319134671 |
Rating |
: 4/5 (73 Downloads) |
Synopsis Lie Groups, Lie Algebras, and Representations by : Brian Hall
This textbook treats Lie groups, Lie algebras and their representations in an elementary but fully rigorous fashion requiring minimal prerequisites. In particular, the theory of matrix Lie groups and their Lie algebras is developed using only linear algebra, and more motivation and intuition for proofs is provided than in most classic texts on the subject. In addition to its accessible treatment of the basic theory of Lie groups and Lie algebras, the book is also noteworthy for including: a treatment of the Baker–Campbell–Hausdorff formula and its use in place of the Frobenius theorem to establish deeper results about the relationship between Lie groups and Lie algebras motivation for the machinery of roots, weights and the Weyl group via a concrete and detailed exposition of the representation theory of sl(3;C) an unconventional definition of semisimplicity that allows for a rapid development of the structure theory of semisimple Lie algebras a self-contained construction of the representations of compact groups, independent of Lie-algebraic arguments The second edition of Lie Groups, Lie Algebras, and Representations contains many substantial improvements and additions, among them: an entirely new part devoted to the structure and representation theory of compact Lie groups; a complete derivation of the main properties of root systems; the construction of finite-dimensional representations of semisimple Lie algebras has been elaborated; a treatment of universal enveloping algebras, including a proof of the Poincaré–Birkhoff–Witt theorem and the existence of Verma modules; complete proofs of the Weyl character formula, the Weyl dimension formula and the Kostant multiplicity formula. Review of the first edition: This is an excellent book. It deserves to, and undoubtedly will, become the standard text for early graduate courses in Lie group theory ... an important addition to the textbook literature ... it is highly recommended. — The Mathematical Gazette
Author |
: Alexander A. Kirillov |
Publisher |
: Cambridge University Press |
Total Pages |
: 237 |
Release |
: 2008-07-31 |
ISBN-10 |
: 9780521889698 |
ISBN-13 |
: 0521889693 |
Rating |
: 4/5 (98 Downloads) |
Synopsis An Introduction to Lie Groups and Lie Algebras by : Alexander A. Kirillov
This book is an introduction to semisimple Lie algebras. It is concise and informal, with numerous exercises and examples.
Author |
: Mark R. Sepanski |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 208 |
Release |
: 2006-12-19 |
ISBN-10 |
: 9780387302638 |
ISBN-13 |
: 0387302638 |
Rating |
: 4/5 (38 Downloads) |
Synopsis Compact Lie Groups by : Mark R. Sepanski
Blending algebra, analysis, and topology, the study of compact Lie groups is one of the most beautiful areas of mathematics and a key stepping stone to the theory of general Lie groups. Assuming no prior knowledge of Lie groups, this book covers the structure and representation theory of compact Lie groups. Coverage includes the construction of the Spin groups, Schur Orthogonality, the Peter-Weyl Theorem, the Plancherel Theorem, the Maximal Torus Theorem, the Commutator Theorem, the Weyl Integration and Character Formulas, the Highest Weight Classification, and the Borel-Weil Theorem. The book develops the necessary Lie algebra theory with a streamlined approach focusing on linear Lie groups.
Author |
: Dong Hoon Lee |
Publisher |
: CRC Press |
Total Pages |
: 229 |
Release |
: 2001-08-31 |
ISBN-10 |
: 9781420035452 |
ISBN-13 |
: 1420035452 |
Rating |
: 4/5 (52 Downloads) |
Synopsis The Structure of Complex Lie Groups by : Dong Hoon Lee
Complex Lie groups have often been used as auxiliaries in the study of real Lie groups in areas such as differential geometry and representation theory. To date, however, no book has fully explored and developed their structural aspects. The Structure of Complex Lie Groups addresses this need. Self-contained, it begins with general concepts
Author |
: A.L. Onishchik |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 264 |
Release |
: 1994-07-12 |
ISBN-10 |
: 3540546839 |
ISBN-13 |
: 9783540546832 |
Rating |
: 4/5 (39 Downloads) |
Synopsis Lie Groups and Lie Algebras III by : A.L. Onishchik
A comprehensive and modern account of the structure and classification of Lie groups and finite-dimensional Lie algebras, by internationally known specialists in the field. This Encyclopaedia volume will be immensely useful to graduate students in differential geometry, algebra and theoretical physics.
Author |
: Luiz A. B. San Martin |
Publisher |
: Springer Nature |
Total Pages |
: 371 |
Release |
: 2021-02-23 |
ISBN-10 |
: 9783030618247 |
ISBN-13 |
: 3030618242 |
Rating |
: 4/5 (47 Downloads) |
Synopsis Lie Groups by : Luiz A. B. San Martin
This textbook provides an essential introduction to Lie groups, presenting the theory from its fundamental principles. Lie groups are a special class of groups that are studied using differential and integral calculus methods. As a mathematical structure, a Lie group combines the algebraic group structure and the differentiable variety structure. Studies of such groups began around 1870 as groups of symmetries of differential equations and the various geometries that had emerged. Since that time, there have been major advances in Lie theory, with ramifications for diverse areas of mathematics and its applications. Each chapter of the book begins with a general, straightforward introduction to the concepts covered; then the formal definitions are presented; and end-of-chapter exercises help to check and reinforce comprehension. Graduate and advanced undergraduate students alike will find in this book a solid yet approachable guide that will help them continue their studies with confidence.
Author |
: J.J. Duistermaat |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 352 |
Release |
: 2012-12-06 |
ISBN-10 |
: 9783642569364 |
ISBN-13 |
: 3642569366 |
Rating |
: 4/5 (64 Downloads) |
Synopsis Lie Groups by : J.J. Duistermaat
This (post) graduate text gives a broad introduction to Lie groups and algebras with an emphasis on differential geometrical methods. It analyzes the structure of compact Lie groups in terms of the action of the group on itself by conjugation, culminating in the classification of the representations of compact Lie groups and their realization as sections of holomorphic line bundles over flag manifolds. Appendices provide background reviews.
Author |
: Robert Gilmore |
Publisher |
: Cambridge University Press |
Total Pages |
: 5 |
Release |
: 2008-01-17 |
ISBN-10 |
: 9781139469074 |
ISBN-13 |
: 113946907X |
Rating |
: 4/5 (74 Downloads) |
Synopsis Lie Groups, Physics, and Geometry by : Robert Gilmore
Describing many of the most important aspects of Lie group theory, this book presents the subject in a 'hands on' way. Rather than concentrating on theorems and proofs, the book shows the applications of the material to physical sciences and applied mathematics. Many examples of Lie groups and Lie algebras are given throughout the text. The relation between Lie group theory and algorithms for solving ordinary differential equations is presented and shown to be analogous to the relation between Galois groups and algorithms for solving polynomial equations. Other chapters are devoted to differential geometry, relativity, electrodynamics, and the hydrogen atom. Problems are given at the end of each chapter so readers can monitor their understanding of the materials. This is a fascinating introduction to Lie groups for graduate and undergraduate students in physics, mathematics and electrical engineering, as well as researchers in these fields.
Author |
: B. Rosenfeld |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 424 |
Release |
: 1997-02-28 |
ISBN-10 |
: 0792343905 |
ISBN-13 |
: 9780792343905 |
Rating |
: 4/5 (05 Downloads) |
Synopsis Geometry of Lie Groups by : B. Rosenfeld
This book is the result of many years of research in Non-Euclidean Geometries and Geometry of Lie groups, as well as teaching at Moscow State University (1947- 1949), Azerbaijan State University (Baku) (1950-1955), Kolomna Pedagogical Col lege (1955-1970), Moscow Pedagogical University (1971-1990), and Pennsylvania State University (1990-1995). My first books on Non-Euclidean Geometries and Geometry of Lie groups were written in Russian and published in Moscow: Non-Euclidean Geometries (1955) [Ro1] , Multidimensional Spaces (1966) [Ro2] , and Non-Euclidean Spaces (1969) [Ro3]. In [Ro1] I considered non-Euclidean geometries in the broad sense, as geometry of simple Lie groups, since classical non-Euclidean geometries, hyperbolic and elliptic, are geometries of simple Lie groups of classes Bn and D , and geometries of complex n and quaternionic Hermitian elliptic and hyperbolic spaces are geometries of simple Lie groups of classes An and en. [Ro1] contains an exposition of the geometry of classical real non-Euclidean spaces and their interpretations as hyperspheres with identified antipodal points in Euclidean or pseudo-Euclidean spaces, and in projective and conformal spaces. Numerous interpretations of various spaces different from our usual space allow us, like stereoscopic vision, to see many traits of these spaces absent in the usual space.