Monte Carlo Methods

Monte Carlo Methods
Author :
Publisher : Springer Nature
Total Pages : 433
Release :
ISBN-10 : 9789811329715
ISBN-13 : 9811329710
Rating : 4/5 (15 Downloads)

Synopsis Monte Carlo Methods by : Adrian Barbu

This book seeks to bridge the gap between statistics and computer science. It provides an overview of Monte Carlo methods, including Sequential Monte Carlo, Markov Chain Monte Carlo, Metropolis-Hastings, Gibbs Sampler, Cluster Sampling, Data Driven MCMC, Stochastic Gradient descent, Langevin Monte Carlo, Hamiltonian Monte Carlo, and energy landscape mapping. Due to its comprehensive nature, the book is suitable for developing and teaching graduate courses on Monte Carlo methods. To facilitate learning, each chapter includes several representative application examples from various fields. The book pursues two main goals: (1) It introduces researchers to applying Monte Carlo methods to broader problems in areas such as Computer Vision, Computer Graphics, Machine Learning, Robotics, Artificial Intelligence, etc.; and (2) it makes it easier for scientists and engineers working in these areas to employ Monte Carlo methods to enhance their research.

Monte Carlo Methods

Monte Carlo Methods
Author :
Publisher : John Wiley & Sons
Total Pages : 195
Release :
ISBN-10 : 9783527617401
ISBN-13 : 352761740X
Rating : 4/5 (01 Downloads)

Synopsis Monte Carlo Methods by : Malvin H. Kalos

This introduction to Monte Carlo Methods seeks to identify and study the unifying elements that underlie their effective application. It focuses on two basic themes. The first is the importance of random walks as they occur both in natural stochastic systems and in their relationship to integral and differential equations. The second theme is that of variance reduction in general and importance sampling in particular as a technique for efficient use of the methods. Random walks are introduced with an elementary example in which the modelling of radiation transport arises directly from a schematic probabilistic description of the interaction of radiation with matter. Building on that example, the relationship between random walks and integral equations is outlined. The applicability of these ideas to other problems is shown by a clear and elementary introduction to the solution of the Schrodinger equation by random walks. The detailed discussion of variance reduction includes Monte Carlo evaluation of finite-dimensional integrals. Special attention is given to importance sampling, partly because of its intrinsic interest in quadrature, partly because of its general usefulness in the solution of integral equations. One significant feature is that Monte Carlo Methods treats the "Metropolis algorithm" in the context of sampling methods, clearly distinguishing it from importance sampling. Physicists, chemists, statisticians, mathematicians, and computer scientists will find Monte Carlo Methods a complete and stimulating introduction.

Monte Carlo Simulation and Resampling Methods for Social Science

Monte Carlo Simulation and Resampling Methods for Social Science
Author :
Publisher : SAGE Publications
Total Pages : 304
Release :
ISBN-10 : 9781483324920
ISBN-13 : 1483324923
Rating : 4/5 (20 Downloads)

Synopsis Monte Carlo Simulation and Resampling Methods for Social Science by : Thomas M. Carsey

Taking the topics of a quantitative methodology course and illustrating them through Monte Carlo simulation, this book examines abstract principles, such as bias, efficiency, and measures of uncertainty in an intuitive, visual way. Instead of thinking in the abstract about what would happen to a particular estimator "in repeated samples," the book uses simulation to actually create those repeated samples and summarize the results. The book includes basic examples appropriate for readers learning the material for the first time, as well as more advanced examples that a researcher might use to evaluate an estimator he or she was using in an actual research project. The book also covers a wide range of topics related to Monte Carlo simulation, such as resampling methods, simulations of substantive theory, simulation of quantities of interest (QI) from model results, and cross-validation. Complete R code from all examples is provided so readers can replicate every analysis presented using R.

Handbook of Monte Carlo Methods

Handbook of Monte Carlo Methods
Author :
Publisher : John Wiley & Sons
Total Pages : 627
Release :
ISBN-10 : 9781118014950
ISBN-13 : 1118014952
Rating : 4/5 (50 Downloads)

Synopsis Handbook of Monte Carlo Methods by : Dirk P. Kroese

A comprehensive overview of Monte Carlo simulation that explores the latest topics, techniques, and real-world applications More and more of today’s numerical problems found in engineering and finance are solved through Monte Carlo methods. The heightened popularity of these methods and their continuing development makes it important for researchers to have a comprehensive understanding of the Monte Carlo approach. Handbook of Monte Carlo Methods provides the theory, algorithms, and applications that helps provide a thorough understanding of the emerging dynamics of this rapidly-growing field. The authors begin with a discussion of fundamentals such as how to generate random numbers on a computer. Subsequent chapters discuss key Monte Carlo topics and methods, including: Random variable and stochastic process generation Markov chain Monte Carlo, featuring key algorithms such as the Metropolis-Hastings method, the Gibbs sampler, and hit-and-run Discrete-event simulation Techniques for the statistical analysis of simulation data including the delta method, steady-state estimation, and kernel density estimation Variance reduction, including importance sampling, latin hypercube sampling, and conditional Monte Carlo Estimation of derivatives and sensitivity analysis Advanced topics including cross-entropy, rare events, kernel density estimation, quasi Monte Carlo, particle systems, and randomized optimization The presented theoretical concepts are illustrated with worked examples that use MATLAB®, a related Web site houses the MATLAB® code, allowing readers to work hands-on with the material and also features the author's own lecture notes on Monte Carlo methods. Detailed appendices provide background material on probability theory, stochastic processes, and mathematical statistics as well as the key optimization concepts and techniques that are relevant to Monte Carlo simulation. Handbook of Monte Carlo Methods is an excellent reference for applied statisticians and practitioners working in the fields of engineering and finance who use or would like to learn how to use Monte Carlo in their research. It is also a suitable supplement for courses on Monte Carlo methods and computational statistics at the upper-undergraduate and graduate levels.

Monte Carlo Methods in Financial Engineering

Monte Carlo Methods in Financial Engineering
Author :
Publisher : Springer Science & Business Media
Total Pages : 603
Release :
ISBN-10 : 9780387216171
ISBN-13 : 0387216170
Rating : 4/5 (71 Downloads)

Synopsis Monte Carlo Methods in Financial Engineering by : Paul Glasserman

From the reviews: "Paul Glasserman has written an astonishingly good book that bridges financial engineering and the Monte Carlo method. The book will appeal to graduate students, researchers, and most of all, practicing financial engineers [...] So often, financial engineering texts are very theoretical. This book is not." --Glyn Holton, Contingency Analysis

Introducing Monte Carlo Methods with R

Introducing Monte Carlo Methods with R
Author :
Publisher : Springer Science & Business Media
Total Pages : 297
Release :
ISBN-10 : 9781441915757
ISBN-13 : 1441915753
Rating : 4/5 (57 Downloads)

Synopsis Introducing Monte Carlo Methods with R by : Christian Robert

This book covers the main tools used in statistical simulation from a programmer’s point of view, explaining the R implementation of each simulation technique and providing the output for better understanding and comparison.

Exploring Monte Carlo Methods

Exploring Monte Carlo Methods
Author :
Publisher : Elsevier
Total Pages : 594
Release :
ISBN-10 : 9780128197455
ISBN-13 : 0128197455
Rating : 4/5 (55 Downloads)

Synopsis Exploring Monte Carlo Methods by : William L. Dunn

Exploring Monte Carlo Methods, Second Edition provides a valuable introduction to the numerical methods that have come to be known as "Monte Carlo." This unique and trusted resource for course use, as well as researcher reference, offers accessible coverage, clear explanations and helpful examples throughout. Building from the basics, the text also includes applications in a variety of fields, such as physics, nuclear engineering, finance and investment, medical modeling and prediction, archaeology, geology and transportation planning. - Provides a comprehensive yet concise treatment of Monte Carlo methods - Uses the famous "Buffon's needle problem" as a unifying theme to illustrate the many aspects of Monte Carlo methods - Includes numerous exercises and useful appendices on: Certain mathematical functions, Bose Einstein functions, Fermi Dirac functions and Watson functions

Monte Carlo Methods

Monte Carlo Methods
Author :
Publisher : Springer Science & Business Media
Total Pages : 184
Release :
ISBN-10 : 9789400958197
ISBN-13 : 9400958196
Rating : 4/5 (97 Downloads)

Synopsis Monte Carlo Methods by : J. Hammersley

This monograph surveys the present state of Monte Carlo methods. we have dallied with certain topics that have interested us Although personally, we hope that our coverage of the subject is reasonably complete; at least we believe that this book and the references in it come near to exhausting the present range of the subject. On the other hand, there are many loose ends; for example we mention various ideas for variance reduction that have never been seriously appli(:d in practice. This is inevitable, and typical of a subject that has remained in its infancy for twenty years or more. We are convinced Qf:ver theless that Monte Carlo methods will one day reach an impressive maturity. The main theoretical content of this book is in Chapter 5; some readers may like to begin with this chapter, referring back to Chapters 2 and 3 when necessary. Chapters 7 to 12 deal with applications of the Monte Carlo method in various fields, and can be read in any order. For the sake of completeness, we cast a very brief glance in Chapter 4 at the direct simulation used in industrial and operational research, where the very simplest Monte Carlo techniques are usually sufficient. We assume that the reader has what might roughly be described as a 'graduate' knowledge of mathematics. The actual mathematical techniques are, with few exceptions, quite elementary, but we have freely used vectors, matrices, and similar mathematical language for the sake of conciseness.

The Monte Carlo Methods in Atmospheric Optics

The Monte Carlo Methods in Atmospheric Optics
Author :
Publisher : Springer
Total Pages : 218
Release :
ISBN-10 : 9783540352372
ISBN-13 : 3540352376
Rating : 4/5 (72 Downloads)

Synopsis The Monte Carlo Methods in Atmospheric Optics by : G.I. Marchuk

This monograph is devoted to urgent questions of the theory and applications of the Monte Carlo method for solving problems of atmospheric optics and hydrooptics. The importance of these problems has grown because of the increas ing need to interpret optical observations, and to estimate radiative balance precisely for weather forecasting. Inhomogeneity and sphericity of the atmos phere, absorption in atmospheric layers, multiple scattering and polarization of light, all create difficulties in solving these problems by traditional methods of computational mathematics. Particular difficulty arises when one must solve nonstationary problems of the theory of transfer of narrow beams that are connected with the estimation of spatial location and time characteristics of the radiation field. The most universal method for solving those problems is the Monte Carlo method, which is a numerical simulation of the radiative-transfer process. This process can be regarded as a Markov chain of photon collisions in a medium, which result in scattering or absorption. The Monte Carlo tech nique consists in computational simulation of that chain and in constructing statistical estimates of the desired functionals. The authors of this book have contributed to the development of mathemati cal methods of simulation and to the interpretation of optical observations. A series of general method using Monte Carlo techniques has been developed. The present book includes theories and algorithms of simulation. Numerical results corroborate the possibilities and give an impressive prospect of the applications of Monte Carlo methods.

Random Number Generation and Monte Carlo Methods

Random Number Generation and Monte Carlo Methods
Author :
Publisher : Springer Science & Business Media
Total Pages : 252
Release :
ISBN-10 : 9781475729603
ISBN-13 : 147572960X
Rating : 4/5 (03 Downloads)

Synopsis Random Number Generation and Monte Carlo Methods by : James E. Gentle

Monte Carlo simulation has become one of the most important tools in all fields of science. This book surveys the basic techniques and principles of the subject, as well as general techniques useful in more complicated models and in novel settings. The emphasis throughout is on practical methods that work well in current computing environments.