Python for Data Science

Python for Data Science
Author :
Publisher :
Total Pages : 266
Release :
ISBN-10 : 1801547998
ISBN-13 : 9781801547994
Rating : 4/5 (98 Downloads)

Synopsis Python for Data Science by : Erick Thompson

Python Machine Learning for Beginners

Python Machine Learning for Beginners
Author :
Publisher :
Total Pages : 236
Release :
ISBN-10 : 1097858308
ISBN-13 : 9781097858309
Rating : 4/5 (08 Downloads)

Synopsis Python Machine Learning for Beginners by : Leonard Deep

Are you interested to get into the programming world? Do you want to learn and understand Python and Machine Learning? Python Machine Learning for Beginners is the guide for you. Python Machine Learning for Beginners is the ultimate guide for beginners looking to learn and understand how Python programming works. Python Machine Learning for Beginners is split up into easy to learn chapters that will help guide the readers through the early stages of Python programming. It's this thought out and systematic approach to learning which makes Python Machine Learning for Beginners such a sought-after resource for those that want to learn about Python programming and about Machine Learning using an object-oriented programming approach. Inside Python Machine Learning for Beginners you will discover: An introduction to Machine Learning The main concepts of Machine Learning The basics of Python for beginners Machine Learning with Python Data Processing, Analysis, and Visualizations Case studies and much more! Throughout the book, you will learn the basic concepts behind Python programming which is designed to introduce you to Python programming. You will learn about getting started, the keywords and statements, data types and type conversion. Along with different examples, there are also exercises to help ensure that the information sinks in. You will find this book an invaluable tool for starting and mastering Machine Learning using Python. Once you complete Python Machine Learning for Beginners, you will be more than prepared to take on any Python programming. Scroll back up to the top of this page and hit BUY IT NOW to get your copy of Python Machine Learning for Beginners! You won't regret it!

SQL for Data Scientists

SQL for Data Scientists
Author :
Publisher : John Wiley & Sons
Total Pages : 400
Release :
ISBN-10 : 9781119669395
ISBN-13 : 1119669391
Rating : 4/5 (95 Downloads)

Synopsis SQL for Data Scientists by : Renee M. P. Teate

Jump-start your career as a data scientist—learn to develop datasets for exploration, analysis, and machine learning SQL for Data Scientists: A Beginner's Guide for Building Datasets for Analysis is a resource that’s dedicated to the Structured Query Language (SQL) and dataset design skills that data scientists use most. Aspiring data scientists will learn how to how to construct datasets for exploration, analysis, and machine learning. You can also discover how to approach query design and develop SQL code to extract data insights while avoiding common pitfalls. You may be one of many people who are entering the field of Data Science from a range of professions and educational backgrounds, such as business analytics, social science, physics, economics, and computer science. Like many of them, you may have conducted analyses using spreadsheets as data sources, but never retrieved and engineered datasets from a relational database using SQL, which is a programming language designed for managing databases and extracting data. This guide for data scientists differs from other instructional guides on the subject. It doesn’t cover SQL broadly. Instead, you’ll learn the subset of SQL skills that data analysts and data scientists use frequently. You’ll also gain practical advice and direction on "how to think about constructing your dataset." Gain an understanding of relational database structure, query design, and SQL syntax Develop queries to construct datasets for use in applications like interactive reports and machine learning algorithms Review strategies and approaches so you can design analytical datasets Practice your techniques with the provided database and SQL code In this book, author Renee Teate shares knowledge gained during a 15-year career working with data, in roles ranging from database developer to data analyst to data scientist. She guides you through SQL code and dataset design concepts from an industry practitioner’s perspective, moving your data scientist career forward!

Python for Data Science

Python for Data Science
Author :
Publisher :
Total Pages : 200
Release :
ISBN-10 : 1687159106
ISBN-13 : 9781687159106
Rating : 4/5 (06 Downloads)

Synopsis Python for Data Science by : Ethan Williams

This book is a comprehensive guide for beginners to learn Python Programming, especially its application for Data Science. While the lessons in this book are targeted at the absolute beginner to programming, people at various levels of proficiency in Python, or any other programming languages can also learn some basics and concepts of data science. A few Python libraries are introduced, including NumPy, Pandas, Matplotlib, and Seaborn for data analysis and visualisation. To make the lessons more intuitive and relatable, practical examples and applications of each lesson are given. The reader is equally encouraged to practise the techniques via exercises, within and at the end of the relevant chapters. To help the reader get a full learning experience, there are references to relevant reading and practice materials, and the reader is encouraged to click these links and explore the possibilities they offer. It is expected that with consistency in learning and practicing the reader can master Python and the basics of its application in data science. The only limitation to the reader's progress, however, is themselves!

Doing Data Science

Doing Data Science
Author :
Publisher : "O'Reilly Media, Inc."
Total Pages : 320
Release :
ISBN-10 : 9781449363895
ISBN-13 : 144936389X
Rating : 4/5 (95 Downloads)

Synopsis Doing Data Science by : Cathy O'Neil

Now that people are aware that data can make the difference in an election or a business model, data science as an occupation is gaining ground. But how can you get started working in a wide-ranging, interdisciplinary field that’s so clouded in hype? This insightful book, based on Columbia University’s Introduction to Data Science class, tells you what you need to know. In many of these chapter-long lectures, data scientists from companies such as Google, Microsoft, and eBay share new algorithms, methods, and models by presenting case studies and the code they use. If you’re familiar with linear algebra, probability, and statistics, and have programming experience, this book is an ideal introduction to data science. Topics include: Statistical inference, exploratory data analysis, and the data science process Algorithms Spam filters, Naive Bayes, and data wrangling Logistic regression Financial modeling Recommendation engines and causality Data visualization Social networks and data journalism Data engineering, MapReduce, Pregel, and Hadoop Doing Data Science is collaboration between course instructor Rachel Schutt, Senior VP of Data Science at News Corp, and data science consultant Cathy O’Neil, a senior data scientist at Johnson Research Labs, who attended and blogged about the course.

Data Analytics for Absolute Beginners: a Deconstructed Guide to Data Literacy

Data Analytics for Absolute Beginners: a Deconstructed Guide to Data Literacy
Author :
Publisher :
Total Pages : 88
Release :
ISBN-10 : 1081762462
ISBN-13 : 9781081762469
Rating : 4/5 (62 Downloads)

Synopsis Data Analytics for Absolute Beginners: a Deconstructed Guide to Data Literacy by : Oliver Theobald

While exposure to data has become more or less a daily ritual for the rank-and-file knowledge worker, true understanding-treated in this book as data literacy-resides in knowing what lies behind the data. Everything from the data's source to the specific choice of input variables, algorithmic transformations, and visual representation shape the accuracy, relevance, and value of the data and mark its journey from raw data to business insight. It's also important to grasp the terminology and basic concepts of data analytics as much as it is to have the financial literacy to be successful as a decisionmaker in the business world. In this book, we make sense of data analytics without the assumption that you understand specific data science terminology or advanced programming languages to set you on your path. Topics covered in this book: Data Mining Big Data Machine Learning Alternative Data Data Management Web Scraping Regression Analysis Clustering Analysis Association Analysis Data Visualization Business Intelligence

R for Data Science

R for Data Science
Author :
Publisher : "O'Reilly Media, Inc."
Total Pages : 521
Release :
ISBN-10 : 9781491910368
ISBN-13 : 1491910364
Rating : 4/5 (68 Downloads)

Synopsis R for Data Science by : Hadley Wickham

Learn how to use R to turn raw data into insight, knowledge, and understanding. This book introduces you to R, RStudio, and the tidyverse, a collection of R packages designed to work together to make data science fast, fluent, and fun. Suitable for readers with no previous programming experience, R for Data Science is designed to get you doing data science as quickly as possible. Authors Hadley Wickham and Garrett Grolemund guide you through the steps of importing, wrangling, exploring, and modeling your data and communicating the results. You'll get a complete, big-picture understanding of the data science cycle, along with basic tools you need to manage the details. Each section of the book is paired with exercises to help you practice what you've learned along the way. You'll learn how to: Wrangle—transform your datasets into a form convenient for analysis Program—learn powerful R tools for solving data problems with greater clarity and ease Explore—examine your data, generate hypotheses, and quickly test them Model—provide a low-dimensional summary that captures true "signals" in your dataset Communicate—learn R Markdown for integrating prose, code, and results

Data Science For Dummies

Data Science For Dummies
Author :
Publisher : John Wiley & Sons
Total Pages : 436
Release :
ISBN-10 : 9781119811619
ISBN-13 : 1119811619
Rating : 4/5 (19 Downloads)

Synopsis Data Science For Dummies by : Lillian Pierson

Monetize your company’s data and data science expertise without spending a fortune on hiring independent strategy consultants to help What if there was one simple, clear process for ensuring that all your company’s data science projects achieve a high a return on investment? What if you could validate your ideas for future data science projects, and select the one idea that’s most prime for achieving profitability while also moving your company closer to its business vision? There is. Industry-acclaimed data science consultant, Lillian Pierson, shares her proprietary STAR Framework – A simple, proven process for leading profit-forming data science projects. Not sure what data science is yet? Don’t worry! Parts 1 and 2 of Data Science For Dummies will get all the bases covered for you. And if you’re already a data science expert? Then you really won’t want to miss the data science strategy and data monetization gems that are shared in Part 3 onward throughout this book. Data Science For Dummies demonstrates: The only process you’ll ever need to lead profitable data science projects Secret, reverse-engineered data monetization tactics that no one’s talking about The shocking truth about how simple natural language processing can be How to beat the crowd of data professionals by cultivating your own unique blend of data science expertise Whether you’re new to the data science field or already a decade in, you’re sure to learn something new and incredibly valuable from Data Science For Dummies. Discover how to generate massive business wins from your company’s data by picking up your copy today.

Data Analytics for Beginners

Data Analytics for Beginners
Author :
Publisher : Createspace Independent Publishing Platform
Total Pages : 112
Release :
ISBN-10 : 1977843131
ISBN-13 : 9781977843135
Rating : 4/5 (31 Downloads)

Synopsis Data Analytics for Beginners by : Robert J. Woz

If you are convinced that the world today is producing more data than the previous decades, then you understand that processing yesterday's data for today's use at times is not enough. The level of data analysis that is needed in highly competitive business environment needs to be processed, analyzed and used immediately for businesses to be ahead of their competition. Having this in mind, you need to understand from the ground up, what data is, the different types of data and how you should identify the right data for your business. To help you understand the simple basics of data and how it needs to be analyzed, then Data Analytics for Beginners is the book that you have been waiting for. The size and type of business you are running doesn't matter because after all, it will depend on your ability to understand the data that your business is exposed to so as to make better business decisions for the current working environment and the future. Are there patterns in your business that you cannot see? Do you want to make sense of the shopping trends of your clients to better enrich their experience? Do you want to know your target market even more? Do you want to better derive insights from the feedback your clients give you? These questions can only be answered when you perform a data analysis for your business. Collecting the data is one thing, analyzing them is another matter entirely as it is not something that can be done haphazardly by just looking at the data. If you hope to understand your data well, you need to understand the data you are collecting, the methods to use and the right tools to use when analyzing the data. Inside you will find valuable steps and tools that will help make your information work for you. Do not let yourself get complacent, stop looking at the data that you collect each day and start analyzing your data to move your business up. Get started by buying this book today! Inside you will find How data should be understood? Terms and concepts used in data analysis. Data mining and the different kinds of databases used to store data. How information can be retrieved and manipulated in the database to create a visual representation of what you want to know? The life cycle of data analysis. And more...

Data Science for Business Professionals

Data Science for Business Professionals
Author :
Publisher : BPB Publications
Total Pages : 376
Release :
ISBN-10 : 9789389423280
ISBN-13 : 9389423287
Rating : 4/5 (80 Downloads)

Synopsis Data Science for Business Professionals by : Probyto Data Science and Consulting Pvt. Ltd.

Primer into the multidisciplinary world of Data Science KEY FEATURESÊÊ - Explore and use the key concepts of Statistics required to solve data science problems - Use Docker, Jenkins, and Git for Continuous Development and Continuous Integration of your web app - Learn how to build Data Science solutions with GCP and AWS DESCRIPTIONÊ The book will initially explain the What-Why of Data Science and the process of solving a Data Science problem. The fundamental concepts of Data Science, such as Statistics, Machine Learning, Business Intelligence, Data pipeline, and Cloud Computing, will also be discussed. All the topics will be explained with an example problem and will show how the industry approaches to solve such a problem. The book will pose questions to the learners to solve the problems and build the problem-solving aptitude and effectively learn. The book uses Mathematics wherever necessary and will show you how it is implemented using Python with the help of an example dataset.Ê WHAT WILL YOU LEARNÊÊ - Understand the multi-disciplinary nature of Data Science - Get familiar with the key concepts in Mathematics and Statistics - Explore a few key ML algorithms and their use cases - Learn how to implement the basics of Data Pipelines - Get an overview of Cloud Computing & DevOps - Learn how to create visualizations using Tableau WHO THIS BOOK IS FORÊ This book is ideal for Data Science enthusiasts who want to explore various aspects of Data Science. Useful for Academicians, Business owners, and Researchers for a quick reference on industrial practices in Data Science.Ê TABLE OF CONTENTS 1. Data Science in Practice 2. Mathematics Essentials 3. Statistics Essentials 4. Exploratory Data Analysis 5. Data preprocessing 6. Feature Engineering 7. Machine learning algorithms 8. Productionizing ML models 9. Data Flows in Enterprises 10. Introduction to Databases 11. Introduction to Big Data 12. DevOps for Data Science 13. Introduction to Cloud Computing 14. Deploy Model to Cloud 15. Introduction to Business IntelligenceÊ 16. Data Visualization Tools 17. Industry Use Case 1 Ð FormAssist 18. Industry Use Case 2 Ð PeopleReporter 19. Data Science Learning Resources 20. Do It Your Self Challenges 21. MCQs for Assessments