Singular Quadratic Forms In Perturbation Theory
Download Singular Quadratic Forms In Perturbation Theory full books in PDF, epub, and Kindle. Read online free Singular Quadratic Forms In Perturbation Theory ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads.
Author |
: Rafael del Río |
Publisher |
: American Mathematical Soc. |
Total Pages |
: 264 |
Release |
: 2004 |
ISBN-10 |
: 9780821832974 |
ISBN-13 |
: 0821832972 |
Rating |
: 4/5 (74 Downloads) |
Synopsis Spectral Theory of Schrodinger Operators by : Rafael del Río
This volume gathers the articles based on a series of lectures from a workshop held at the Institute of Applied Mathematics of the National University of Mexico. The aim of the book is to present to a non-specialized audience the basic tools needed to understand and appreciate new trends of research on Schrodinger operator theory. Topics discussed include various aspects of the spectral theory of differential operators, the theory of self-adjoint operators, finite rank perturbations, spectral properties of random Schrodinger operators, and scattering theory for Schrodinger operators. The material is suitable for graduate students and research mathematicians interested in differential operators, in particular, spectral theory of Schrodinger operators.
Author |
: Sergio Albeverio |
Publisher |
: American Mathematical Soc. |
Total Pages |
: 650 |
Release |
: 2000 |
ISBN-10 |
: 0821819607 |
ISBN-13 |
: 9780821819609 |
Rating |
: 4/5 (07 Downloads) |
Synopsis Stochastic Processes, Physics and Geometry: New Interplays. II by : Sergio Albeverio
This volume and Stochastic Processes, Physics and Geometry: New Interplays I present state-of-the-art research currently unfolding at the interface between mathematics and physics. Included are select articles from the international conference held in Leipzig (Germany) in honor of Sergio Albeverio's sixtieth birthday. The theme of the conference, "Infinite Dimensional (Stochastic) Analysis and Quantum Physics", was chosen to reflect Albeverio's wide-ranging scientific interests. The articles in these books reflect that broad range of interests and provide a detailed overview highlighting the deep interplay among stochastic processes, mathematical physics, and geometry. The contributions are written by internationally recognized experts in the fields of stochastic analysis, linear and nonlinear (deterministic and stochastic) PDEs, infinite dimensional analysis, functional analysis, commutative and noncommutative probability theory, integrable systems, quantum and statistical mechanics, geometric quantization, and neural networks. Also included are applications in biology and other areas. Most of the contributions are high-level research papers. However, there are also some overviews on topics of general interest. The articles selected for publication in these volumes were specifically chosen to introduce readers to advanced topics, to emphasize interdisciplinary connections, and to stress future research directions. Volume I contains contributions from invited speakers; Volume II contains additional contributed papers. Members of the Canadian Mathematical Society may order at the AMS member price.
Author |
: V.M. Adamyan |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 458 |
Release |
: 2000-03-01 |
ISBN-10 |
: 376436288X |
ISBN-13 |
: 9783764362881 |
Rating |
: 4/5 (8X Downloads) |
Synopsis Operator Theory and Related Topics by : V.M. Adamyan
The present book is the second of the two volume Proceedings of the Mark Krein International Conference on Operator Theory and Applications. This conference, which was dedicated to the 90th Anniversary of the prominent mathematician Mark Krein, was held in Odessa, Ukraine from 18-22 August, 1997. The conference focused on the main ideas, methods, results, and achievements of M. G. Krein. This second volume is devoted to operator theory and related topics. It opens with the bibliography of M. G. Krein and a number of survey papers about his work. The main part of the book consists of original research papers presenting the state of the art in operator theory and its applications. The first volume of these proceedings, entitled Differential Operators and related Topics, concerns the other aspects of the conference. The two volumes will be of interest to a wide-range of readership in pure and applied mathematics, physics and engineering sciences. Table of Contents Preface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii Bibliography of Mark Grigorevich Krein . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix Review papers: M. G. Krein's Contributions to Prediction Theory H. Dym M. G. Krein's Contribution to the Moment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 AA Nudelman Research Papers: Solution of the Truncated Matrix Hamburger Moment Problem according to M. G. Krein . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Y. M. Adamyan and I. M. Tkachenko Extreme Points of a Positive Operator Ball . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 T. Ando M-accretive Extensions of Sectorial Operators and Krein Spaces . . . . . . . . . 67 Y. M. Arlinskii A Simple Proof of the Continuous Commutant Lifting Theorem . . . . . . . . . . 83 R. Bruzual and M.
Author |
: Tosio Kato |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 610 |
Release |
: 2013-06-29 |
ISBN-10 |
: 9783662126783 |
ISBN-13 |
: 3662126788 |
Rating |
: 4/5 (83 Downloads) |
Synopsis Perturbation theory for linear operators by : Tosio Kato
Author |
: Michael Demuth |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 344 |
Release |
: 2014-07-08 |
ISBN-10 |
: 9783034805919 |
ISBN-13 |
: 3034805918 |
Rating |
: 4/5 (19 Downloads) |
Synopsis Mathematical Physics, Spectral Theory and Stochastic Analysis by : Michael Demuth
This volume presents self-contained survey articles on modern research areas written by experts in their fields. The topics are located at the interface of spectral theory, theory of partial differential operators, stochastic analysis, and mathematical physics. The articles are accessible to graduate students and researches from other fields of mathematics or physics while also being of value to experts, as they report on the state of the art in the respective fields.
Author |
: Yurij M. Berezansky |
Publisher |
: Springer Nature |
Total Pages |
: 489 |
Release |
: 2024-01-06 |
ISBN-10 |
: 9783031463877 |
ISBN-13 |
: 3031463870 |
Rating |
: 4/5 (77 Downloads) |
Synopsis Jacobi Matrices and the Moment Problem by : Yurij M. Berezansky
This monograph presents the solution of the classical moment problem, the construction of Jacobi matrices and corresponding polynomials. The cases of strongly,trigonometric, complex and real two-dimensional moment problems are discussed, and the Jacobi-type matrices corresponding to the trigonometric moment problem are shown. The Berezansky theory of the expansion in generalized eigenvectors for corresponding set of commuting operators plays the key role in the proof of results. The book is recommended for researchers in fields of functional analysis, operator theory, mathematical physics, and engineers who deal with problems of coupled pendulums.
Author |
: Fritz Gesztesy |
Publisher |
: American Mathematical Society |
Total Pages |
: 946 |
Release |
: 2024-09-24 |
ISBN-10 |
: 9781470476663 |
ISBN-13 |
: 1470476665 |
Rating |
: 4/5 (63 Downloads) |
Synopsis Sturm?Liouville Operators, Their Spectral Theory, and Some Applications by : Fritz Gesztesy
This book provides a detailed treatment of the various facets of modern Sturm?Liouville theory, including such topics as Weyl?Titchmarsh theory, classical, renormalized, and perturbative oscillation theory, boundary data maps, traces and determinants for Sturm?Liouville operators, strongly singular Sturm?Liouville differential operators, generalized boundary values, and Sturm?Liouville operators with distributional coefficients. To illustrate the theory, the book develops an array of examples from Floquet theory to short-range scattering theory, higher-order KdV trace relations, elliptic and algebro-geometric finite gap potentials, reflectionless potentials and the Sodin?Yuditskii class, as well as a detailed collection of singular examples, such as the Bessel, generalized Bessel, and Jacobi operators. A set of appendices contains background on the basics of linear operators and spectral theory in Hilbert spaces, Schatten?von Neumann classes of compact operators, self-adjoint extensions of symmetric operators, including the Friedrichs and Krein?von Neumann extensions, boundary triplets for ODEs, Krein-type resolvent formulas, sesquilinear forms, Nevanlinna?Herglotz functions, and Bessel functions.
Author |
: Jussi Behrndt |
Publisher |
: Springer Nature |
Total Pages |
: 775 |
Release |
: 2020-01-03 |
ISBN-10 |
: 9783030367145 |
ISBN-13 |
: 3030367142 |
Rating |
: 4/5 (45 Downloads) |
Synopsis Boundary Value Problems, Weyl Functions, and Differential Operators by : Jussi Behrndt
This open access book presents a comprehensive survey of modern operator techniques for boundary value problems and spectral theory, employing abstract boundary mappings and Weyl functions. It includes self-contained treatments of the extension theory of symmetric operators and relations, spectral characterizations of selfadjoint operators in terms of the analytic properties of Weyl functions, form methods for semibounded operators, and functional analytic models for reproducing kernel Hilbert spaces. Further, it illustrates these abstract methods for various applications, including Sturm-Liouville operators, canonical systems of differential equations, and multidimensional Schrödinger operators, where the abstract Weyl function appears as either the classical Titchmarsh-Weyl coefficient or the Dirichlet-to-Neumann map. The book is a valuable reference text for researchers in the areas of differential equations, functional analysis, mathematical physics, and system theory. Moreover, thanks to its detailed exposition of the theory, it is also accessible and useful for advanced students and researchers in other branches of natural sciences and engineering.
Author |
: K. W. Chang |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 191 |
Release |
: 2012-12-06 |
ISBN-10 |
: 9781461211143 |
ISBN-13 |
: 146121114X |
Rating |
: 4/5 (43 Downloads) |
Synopsis Nonlinear Singular Perturbation Phenomena by : K. W. Chang
Our purpose in writing this monograph is twofold. On the one hand, we want to collect in one place many of the recent results on the exist ence and asymptotic behavior of solutions of certain classes of singularly perturbed nonlinear boundary value problems. On the other, we hope to raise along the way a number of questions for further study, mostly ques tions we ourselves are unable to answer. The presentation involves a study of both scalar and vector boundary value problems for ordinary dif ferential equations, by means of the consistent use of differential in equality techniques. Our results for scalar boundary value problems obeying some type of maximum principle are fairly complete; however, we have been unable to treat, under any circumstances, problems involving "resonant" behavior. The linear theory for such problems is incredibly complicated already, and at the present time there appears to be little hope for any kind of general nonlinear theory. Our results for vector boundary value problems, even those admitting higher dimensional maximum principles in the form of invariant regions, are also far from complete. We offer them with some trepidation, in the hope that they may stimulate further work in this challenging and important area of differential equa tions. The research summarized here has been made possible by the support over the years of the National Science Foundation and the National Science and Engineering Research Council.
Author |
: A. Uglanov |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 280 |
Release |
: 2013-06-29 |
ISBN-10 |
: 9789401596220 |
ISBN-13 |
: 9401596220 |
Rating |
: 4/5 (20 Downloads) |
Synopsis Integration on Infinite-Dimensional Surfaces and Its Applications by : A. Uglanov
It seems hard to believe, but mathematicians were not interested in integration problems on infinite-dimensional nonlinear structures up to 70s of our century. At least the author is not aware of any publication concerning this theme, although as early as 1967 L. Gross mentioned that the analysis on infinite dimensional manifolds is a field of research with rather rich opportunities in his classical work [2. This prediction was brilliantly confirmed afterwards, but we shall return to this later on. In those days the integration theory in infinite dimensional linear spaces was essentially developed in the heuristic works of RP. Feynman [1], I. M. Gelfand, A. M. Yaglom [1]). The articles of J. Eells [1], J. Eells and K. D. Elworthy [1], H. -H. Kuo [1], V. Goodman [1], where the contraction of a Gaussian measure on a hypersurface, in particular, was built and the divergence theorem (the Gauss-Ostrogradskii formula) was proved, appeared only in the beginning of the 70s. In this case a Gaussian specificity was essential and it was even pointed out in a later monograph of H. -H. Kuo [3] that the surface measure for the non-Gaussian case construction problem is not simple and has not yet been solved. A. V. Skorokhod [1] and the author [6,10] offered different approaches to such a construction. Some other approaches were offered later by Yu. L. Daletskii and B. D. Maryanin [1], O. G. Smolyanov [6], N. V.