Scientific and Engineering C++

Scientific and Engineering C++
Author :
Publisher : Addison-Wesley Professional
Total Pages : 696
Release :
ISBN-10 : UOM:39076001871628
ISBN-13 :
Rating : 4/5 (28 Downloads)

Synopsis Scientific and Engineering C++ by : John J. Barton

Highlights: builds on knowledge of both FORTRAN and C, the languages most familiar to scientists and engineers; systematically treats object-oriented programming, templates, and the C++ type system; relates the C++ programming process to expressing commonality in the design and implementation of programs; describes how to use existing FORTRAN and C subroutine libraries to implement C++ classes; introduces advanced techniques coordinating templates, inheritance, virtual function interfaces, and exceptions in substantive examples; provides examples, including an extensive family of array classes, smart pointers, class wrappers for LAPACK, classes for abstract algebra and dimensional analysis, function objects, exploiting existing C and FORTRAN libraries, automatic differentiation, and data analysis via nonlinear least squares using the singular value decomposition; and references key sources of new programming ideas and C++ programming techniques.

Software Engineering for Science

Software Engineering for Science
Author :
Publisher : CRC Press
Total Pages : 311
Release :
ISBN-10 : 9781498743860
ISBN-13 : 1498743862
Rating : 4/5 (60 Downloads)

Synopsis Software Engineering for Science by : Jeffrey C. Carver

Software Engineering for Science provides an in-depth collection of peer-reviewed chapters that describe experiences with applying software engineering practices to the development of scientific software. It provides a better understanding of how software engineering is and should be practiced, and which software engineering practices are effective for scientific software. The book starts with a detailed overview of the Scientific Software Lifecycle, and a general overview of the scientific software development process. It highlights key issues commonly arising during scientific software development, as well as solutions to these problems. The second part of the book provides examples of the use of testing in scientific software development, including key issues and challenges. The chapters then describe solutions and case studies aimed at applying testing to scientific software development efforts. The final part of the book provides examples of applying software engineering techniques to scientific software, including not only computational modeling, but also software for data management and analysis. The authors describe their experiences and lessons learned from developing complex scientific software in different domains. About the Editors Jeffrey Carver is an Associate Professor in the Department of Computer Science at the University of Alabama. He is one of the primary organizers of the workshop series on Software Engineering for Science (http://www.SE4Science.org/workshops). Neil P. Chue Hong is Director of the Software Sustainability Institute at the University of Edinburgh. His research interests include barriers and incentives in research software ecosystems and the role of software as a research object. George K. Thiruvathukal is Professor of Computer Science at Loyola University Chicago and Visiting Faculty at Argonne National Laboratory. His current research is focused on software metrics in open source mathematical and scientific software.

Scientific Programming and Computer Architecture

Scientific Programming and Computer Architecture
Author :
Publisher : MIT Press
Total Pages : 625
Release :
ISBN-10 : 9780262036290
ISBN-13 : 0262036290
Rating : 4/5 (90 Downloads)

Synopsis Scientific Programming and Computer Architecture by : Divakar Viswanath

A variety of programming models relevant to scientists explained, with an emphasis on how programming constructs map to parts of the computer. What makes computer programs fast or slow? To answer this question, we have to get behind the abstractions of programming languages and look at how a computer really works. This book examines and explains a variety of scientific programming models (programming models relevant to scientists) with an emphasis on how programming constructs map to different parts of the computer's architecture. Two themes emerge: program speed and program modularity. Throughout this book, the premise is to "get under the hood," and the discussion is tied to specific programs. The book digs into linkers, compilers, operating systems, and computer architecture to understand how the different parts of the computer interact with programs. It begins with a review of C/C++ and explanations of how libraries, linkers, and Makefiles work. Programming models covered include Pthreads, OpenMP, MPI, TCP/IP, and CUDA.The emphasis on how computers work leads the reader into computer architecture and occasionally into the operating system kernel. The operating system studied is Linux, the preferred platform for scientific computing. Linux is also open source, which allows users to peer into its inner workings. A brief appendix provides a useful table of machines used to time programs. The book's website (https://github.com/divakarvi/bk-spca) has all the programs described in the book as well as a link to the html text.

Programming in C++ for Engineering and Science

Programming in C++ for Engineering and Science
Author :
Publisher : CRC Press
Total Pages : 744
Release :
ISBN-10 : 9781439825358
ISBN-13 : 1439825351
Rating : 4/5 (58 Downloads)

Synopsis Programming in C++ for Engineering and Science by : Larry Nyhoff

Developed from the author's many years of teaching computing courses, Programming in C++ for Engineering and Science guides students in designing programs to solve real problems encountered in engineering and scientific applications. These problems include radioactive decay, pollution indexes, digital circuits, differential equations, Internet addr

A Short Course in Computational Science and Engineering

A Short Course in Computational Science and Engineering
Author :
Publisher : Cambridge University Press
Total Pages : 281
Release :
ISBN-10 : 9781107375413
ISBN-13 : 110737541X
Rating : 4/5 (13 Downloads)

Synopsis A Short Course in Computational Science and Engineering by : David Yevick

Building on his highly successful textbook on C++, David Yevick provides a concise yet comprehensive one-stop course in three key programming languages, C++, Java and Octave (a freeware alternative to MATLAB). Employing only public-domain software, this book presents a unique overview of numerical and programming techniques, including object-oriented programming, elementary and advanced topics in numerical analysis, physical system modelling, scientific graphics, software engineering and performance issues. Compact, transparent code in all three programming languages is applied to the fundamental equations of quantum mechanics, electromagnetics, mechanics and statistical mechanics. Uncommented versions of the code that can be immediately modified and adapted are provided online for the more involved programs. This compact, practical text is an invaluable introduction for students in all undergraduate- and graduate-level courses in the physical sciences or engineering that require numerical modelling, and also a key reference for instructors and scientific programmers.

Solving PDEs in C++

Solving PDEs in C++
Author :
Publisher : SIAM
Total Pages : 775
Release :
ISBN-10 : 9781611972160
ISBN-13 : 1611972167
Rating : 4/5 (60 Downloads)

Synopsis Solving PDEs in C++ by : Yair Shapira

In this much-expanded second edition, author Yair Shapira presents new applications and a substantial extension of the original object-oriented framework to make this popular and comprehensive book even easier to understand and use. It not only introduces the C and C++ programming languages, but also shows how to use them in the numerical solution of partial differential equations (PDEs). The book leads readers through the entire solution process, from the original PDE, through the discretization stage, to the numerical solution of the resulting algebraic system. The high level of abstraction available in C++ is particularly useful in the implementation of complex mathematical objects, such as unstructured mesh, sparse matrix, and multigrid hierarchy, often used in numerical modeling. The well-debugged and tested code segments implement the numerical methods efficiently and transparently in a unified object-oriented approach.

Ceramic Materials

Ceramic Materials
Author :
Publisher : Springer Science & Business Media
Total Pages : 775
Release :
ISBN-10 : 9781461435235
ISBN-13 : 1461435234
Rating : 4/5 (35 Downloads)

Synopsis Ceramic Materials by : C. Barry Carter

Ceramic Materials: Science and Engineering is an up-to-date treatment of ceramic science, engineering, and applications in a single, comprehensive text. Building on a foundation of crystal structures, phase equilibria, defects, and the mechanical properties of ceramic materials, students are shown how these materials are processed for a wide diversity of applications in today's society. Concepts such as how and why ions move, how ceramics interact with light and magnetic fields, and how they respond to temperature changes are discussed in the context of their applications. References to the art and history of ceramics are included throughout the text, and a chapter is devoted to ceramics as gemstones. This course-tested text now includes expanded chapters on the role of ceramics in industry and their impact on the environment as well as a chapter devoted to applications of ceramic materials in clean energy technologies. Also new are expanded sets of text-specific homework problems and other resources for instructors. The revised and updated Second Edition is further enhanced with color illustrations throughout the text.

An Introduction to High-performance Scientific Computing

An Introduction to High-performance Scientific Computing
Author :
Publisher : MIT Press
Total Pages : 838
Release :
ISBN-10 : 0262061813
ISBN-13 : 9780262061810
Rating : 4/5 (13 Downloads)

Synopsis An Introduction to High-performance Scientific Computing by : Lloyd Dudley Fosdick

Designed for undergraduates, An Introduction to High-Performance Scientific Computing assumes a basic knowledge of numerical computation and proficiency in Fortran or C programming and can be used in any science, computer science, applied mathematics, or engineering department or by practicing scientists and engineers, especially those associated with one of the national laboratories or supercomputer centers. This text evolved from a new curriculum in scientific computing that was developed to teach undergraduate science and engineering majors how to use high-performance computing systems (supercomputers) in scientific and engineering applications. Designed for undergraduates, An Introduction to High-Performance Scientific Computing assumes a basic knowledge of numerical computation and proficiency in Fortran or C programming and can be used in any science, computer science, applied mathematics, or engineering department or by practicing scientists and engineers, especially those associated with one of the national laboratories or supercomputer centers. The authors begin with a survey of scientific computing and then provide a review of background (numerical analysis, IEEE arithmetic, Unix, Fortran) and tools (elements of MATLAB, IDL, AVS). Next, full coverage is given to scientific visualization and to the architectures (scientific workstations and vector and parallel supercomputers) and performance evaluation needed to solve large-scale problems. The concluding section on applications includes three problems (molecular dynamics, advection, and computerized tomography) that illustrate the challenge of solving problems on a variety of computer architectures as well as the suitability of a particular architecture to solving a particular problem. Finally, since this can only be a hands-on course with extensive programming and experimentation with a variety of architectures and programming paradigms, the authors have provided a laboratory manual and supporting software via anonymous ftp. Scientific and Engineering Computation series

Numerical Methods in Engineering and Science

Numerical Methods in Engineering and Science
Author :
Publisher :
Total Pages : 0
Release :
ISBN-10 : 1683921283
ISBN-13 : 9781683921288
Rating : 4/5 (83 Downloads)

Synopsis Numerical Methods in Engineering and Science by : B. S. Grewal

This comprehensive text is an excellent resource for students and practicing engineers. Providing an excellent balance of theoretical and applied topics, it shows the numerical methods used with C, C++, and MATLAB--