Engineering Optimization

Engineering Optimization
Author :
Publisher : New Age International
Total Pages : 936
Release :
ISBN-10 : 8122411495
ISBN-13 : 9788122411492
Rating : 4/5 (95 Downloads)

Synopsis Engineering Optimization by : S. S. Rao

A Rigorous Mathematical Approach To Identifying A Set Of Design Alternatives And Selecting The Best Candidate From Within That Set, Engineering Optimization Was Developed As A Means Of Helping Engineers To Design Systems That Are Both More Efficient And Less Expensive And To Develop New Ways Of Improving The Performance Of Existing Systems.Thanks To The Breathtaking Growth In Computer Technology That Has Occurred Over The Past Decade, Optimization Techniques Can Now Be Used To Find Creative Solutions To Larger, More Complex Problems Than Ever Before. As A Consequence, Optimization Is Now Viewed As An Indispensable Tool Of The Trade For Engineers Working In Many Different Industries, Especially The Aerospace, Automotive, Chemical, Electrical, And Manufacturing Industries.In Engineering Optimization, Professor Singiresu S. Rao Provides An Application-Oriented Presentation Of The Full Array Of Classical And Newly Developed Optimization Techniques Now Being Used By Engineers In A Wide Range Of Industries. Essential Proofs And Explanations Of The Various Techniques Are Given In A Straightforward, User-Friendly Manner, And Each Method Is Copiously Illustrated With Real-World Examples That Demonstrate How To Maximize Desired Benefits While Minimizing Negative Aspects Of Project Design.Comprehensive, Authoritative, Up-To-Date, Engineering Optimization Provides In-Depth Coverage Of Linear And Nonlinear Programming, Dynamic Programming, Integer Programming, And Stochastic Programming Techniques As Well As Several Breakthrough Methods, Including Genetic Algorithms, Simulated Annealing, And Neural Network-Based And Fuzzy Optimization Techniques.Designed To Function Equally Well As Either A Professional Reference Or A Graduate-Level Text, Engineering Optimization Features Many Solved Problems Taken From Several Engineering Fields, As Well As Review Questions, Important Figures, And Helpful References.Engineering Optimization Is A Valuable Working Resource For Engineers Employed In Practically All Technological Industries. It Is Also A Superior Didactic Tool For Graduate Students Of Mechanical, Civil, Electrical, Chemical And Aerospace Engineering.

Modern Optimization Methods for Science, Engineering and Technology

Modern Optimization Methods for Science, Engineering and Technology
Author :
Publisher :
Total Pages : 0
Release :
ISBN-10 : 075032404X
ISBN-13 : 9780750324045
Rating : 4/5 (4X Downloads)

Synopsis Modern Optimization Methods for Science, Engineering and Technology by : G. R. Sinha

Achieving a better solution or improving the performance of existing system design is an ongoing a process for which scientists, engineers, mathematicians and researchers have been striving for many years. Ever increasingly practical and robust methods have been developed, and every new generation of computers with their increased power and speed allows for the development and wider application of new types of solutions. This book defines the fundamentals, background and theoretical concepts of optimization principles in a comprehensive manner along with their potential applications and implementation strategies. It encompasses linear programming, multivariable methods for risk assessment, nonlinear methods, ant colony optimization, particle swarm optimization, multi-criterion and topology optimization, learning classifier, case studies on six sigma, performance measures and evaluation, multi-objective optimization problems, machine learning approaches, genetic algorithms and quality of service optimizations. The book will be very useful for wide spectrum of target readers including students and researchers in academia and industry.

Multicriteria Optimization in Engineering and in the Sciences

Multicriteria Optimization in Engineering and in the Sciences
Author :
Publisher : Springer Science & Business Media
Total Pages : 442
Release :
ISBN-10 : 0306427435
ISBN-13 : 9780306427435
Rating : 4/5 (35 Downloads)

Synopsis Multicriteria Optimization in Engineering and in the Sciences by : Wolfram Stadler

We are rarely asked to. make decisions based on only one criterion; most often, decisions are based on several usually confticting, criteria. In nature, if the design of a system evolves to some final, optimal state, then it must include a balance for the interaction of the system with its surroundings certainly a design based on a variety of criteria. Furthermore, the diversity of nature's designs suggests an infinity of such optimal states. In another sense, decisions simultaneously optimize a finite number of criteria, while there is usually an infinity of optimal solutions. Multicriteria optimization provides the mathematical framework to accommodate these demands. Multicriteria optimization has its roots in mathematical economics, in particular, in consumer economics as considered by Edgeworth and Pareto. The critical question in an exchange economy concerns the "equilibrium point" at which each of N consumers has achieved the best possible deal for hirnself or herself. Ultimately, this is a collective decision in which any further gain by one consumer can occur only at the expense of at least one other consumer. Such an equilibrium concept was first introduced by Edgeworth in 1881 in his book on mathematical psychics. Today, such an optimum is variously called "Pareto optimum" (after the Italian-French welfare economist who continued and expanded Edgeworth's work), "effi. cient," "nondominated," and so on.

Matrix, Numerical, and Optimization Methods in Science and Engineering

Matrix, Numerical, and Optimization Methods in Science and Engineering
Author :
Publisher : Cambridge University Press
Total Pages : 728
Release :
ISBN-10 : 9781108787628
ISBN-13 : 1108787622
Rating : 4/5 (28 Downloads)

Synopsis Matrix, Numerical, and Optimization Methods in Science and Engineering by : Kevin W. Cassel

Address vector and matrix methods necessary in numerical methods and optimization of linear systems in engineering with this unified text. Treats the mathematical models that describe and predict the evolution of our processes and systems, and the numerical methods required to obtain approximate solutions. Explores the dynamical systems theory used to describe and characterize system behaviour, alongside the techniques used to optimize their performance. Integrates and unifies matrix and eigenfunction methods with their applications in numerical and optimization methods. Consolidating, generalizing, and unifying these topics into a single coherent subject, this practical resource is suitable for advanced undergraduate students and graduate students in engineering, physical sciences, and applied mathematics.

Optimization in Engineering

Optimization in Engineering
Author :
Publisher : Springer
Total Pages : 422
Release :
ISBN-10 : 9783319567693
ISBN-13 : 3319567691
Rating : 4/5 (93 Downloads)

Synopsis Optimization in Engineering by : Ramteen Sioshansi

This textbook covers the fundamentals of optimization, including linear, mixed-integer linear, nonlinear, and dynamic optimization techniques, with a clear engineering focus. It carefully describes classical optimization models and algorithms using an engineering problem-solving perspective, and emphasizes modeling issues using many real-world examples related to a variety of application areas. Providing an appropriate blend of practical applications and optimization theory makes the text useful to both practitioners and students, and gives the reader a good sense of the power of optimization and the potential difficulties in applying optimization to modeling real-world systems. The book is intended for undergraduate and graduate-level teaching in industrial engineering and other engineering specialties. It is also of use to industry practitioners, due to the inclusion of real-world applications, opening the door to advanced courses on both modeling and algorithm development within the industrial engineering and operations research fields.

Global Optimization

Global Optimization
Author :
Publisher : Springer Science & Business Media
Total Pages : 559
Release :
ISBN-10 : 9780387309279
ISBN-13 : 0387309276
Rating : 4/5 (79 Downloads)

Synopsis Global Optimization by : János D. Pintér

Optimization models based on a nonlinear systems description often possess multiple local optima. The objective of Global Optimization (GO) is to find the best possible solution of multiextremal problems. This volume illustrates the applicability of GO modeling techniques and solution strategies to real-world problems. Coverage extends to a broad range of applications, from agroecosystem management to robot design. Proposed solutions encompass a range of practical and viable methods.

Engineering Optimization

Engineering Optimization
Author :
Publisher : John Wiley & Sons
Total Pages : 377
Release :
ISBN-10 : 9780470640418
ISBN-13 : 0470640413
Rating : 4/5 (18 Downloads)

Synopsis Engineering Optimization by : Xin-She Yang

An accessible introduction to metaheuristics and optimization, featuring powerful and modern algorithms for application across engineering and the sciences From engineering and computer science to economics and management science, optimization is a core component for problem solving. Highlighting the latest developments that have evolved in recent years, Engineering Optimization: An Introduction with Metaheuristic Applications outlines popular metaheuristic algorithms and equips readers with the skills needed to apply these techniques to their own optimization problems. With insightful examples from various fields of study, the author highlights key concepts and techniques for the successful application of commonly-used metaheuristc algorithms, including simulated annealing, particle swarm optimization, harmony search, and genetic algorithms. The author introduces all major metaheuristic algorithms and their applications in optimization through a presentation that is organized into three succinct parts: Foundations of Optimization and Algorithms provides a brief introduction to the underlying nature of optimization and the common approaches to optimization problems, random number generation, the Monte Carlo method, and the Markov chain Monte Carlo method Metaheuristic Algorithms presents common metaheuristic algorithms in detail, including genetic algorithms, simulated annealing, ant algorithms, bee algorithms, particle swarm optimization, firefly algorithms, and harmony search Applications outlines a wide range of applications that use metaheuristic algorithms to solve challenging optimization problems with detailed implementation while also introducing various modifications used for multi-objective optimization Throughout the book, the author presents worked-out examples and real-world applications that illustrate the modern relevance of the topic. A detailed appendix features important and popular algorithms using MATLAB® and Octave software packages, and a related FTP site houses MATLAB code and programs for easy implementation of the discussed techniques. In addition, references to the current literature enable readers to investigate individual algorithms and methods in greater detail. Engineering Optimization: An Introduction with Metaheuristic Applications is an excellent book for courses on optimization and computer simulation at the upper-undergraduate and graduate levels. It is also a valuable reference for researchers and practitioners working in the fields of mathematics, engineering, computer science, operations research, and management science who use metaheuristic algorithms to solve problems in their everyday work.

Numerical Optimization in Engineering and Sciences

Numerical Optimization in Engineering and Sciences
Author :
Publisher : Springer Nature
Total Pages : 569
Release :
ISBN-10 : 9789811532153
ISBN-13 : 981153215X
Rating : 4/5 (53 Downloads)

Synopsis Numerical Optimization in Engineering and Sciences by : Debashis Dutta

This book presents select peer-reviewed papers presented at the International Conference on Numerical Optimization in Engineering and Sciences (NOIEAS) 2019. The book covers a wide variety of numerical optimization techniques across all major engineering disciplines like mechanical, manufacturing, civil, electrical, chemical, computer, and electronics engineering. The major focus is on innovative ideas, current methods and latest results involving advanced optimization techniques. The contents provide a good balance between numerical models and analytical results obtained for different engineering problems and challenges. This book will be useful for students, researchers, and professionals interested in engineering optimization techniques.

Practical Optimization

Practical Optimization
Author :
Publisher : Springer Science & Business Media
Total Pages : 675
Release :
ISBN-10 : 9780387711065
ISBN-13 : 0387711066
Rating : 4/5 (65 Downloads)

Synopsis Practical Optimization by : Andreas Antoniou

Practical Optimization: Algorithms and Engineering Applications is a hands-on treatment of the subject of optimization. A comprehensive set of problems and exercises makes the book suitable for use in one or two semesters of a first-year graduate course or an advanced undergraduate course. Each half of the book contains a full semester’s worth of complementary yet stand-alone material. The practical orientation of the topics chosen and a wealth of useful examples also make the book suitable for practitioners in the field.

Theory of Multiobjective Optimization

Theory of Multiobjective Optimization
Author :
Publisher : Elsevier
Total Pages : 311
Release :
ISBN-10 : 9780080958668
ISBN-13 : 0080958664
Rating : 4/5 (68 Downloads)

Synopsis Theory of Multiobjective Optimization by : Yoshikazu Sawaragi

In this book, we study theoretical and practical aspects of computing methods for mathematical modelling of nonlinear systems. A number of computing techniques are considered, such as methods of operator approximation with any given accuracy; operator interpolation techniques including a non-Lagrange interpolation; methods of system representation subject to constraints associated with concepts of causality, memory and stationarity; methods of system representation with an accuracy that is the best within a given class of models; methods of covariance matrix estimation;methods for low-rank matrix approximations; hybrid methods based on a combination of iterative procedures and best operator approximation; andmethods for information compression and filtering under condition that a filter model should satisfy restrictions associated with causality and different types of memory.As a result, the book represents a blend of new methods in general computational analysis,and specific, but also generic, techniques for study of systems theory ant its particularbranches, such as optimal filtering and information compression. - Best operator approximation,- Non-Lagrange interpolation,- Generic Karhunen-Loeve transform- Generalised low-rank matrix approximation- Optimal data compression- Optimal nonlinear filtering