Meromorphic Functions And Analytic Curves
Download Meromorphic Functions And Analytic Curves full books in PDF, epub, and Kindle. Read online free Meromorphic Functions And Analytic Curves ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads.
Author |
: Hermann Weyl |
Publisher |
: Princeton University Press |
Total Pages |
: 269 |
Release |
: 2016-03-02 |
ISBN-10 |
: 9781400882281 |
ISBN-13 |
: 1400882281 |
Rating |
: 4/5 (81 Downloads) |
Synopsis Meromorphic Functions and Analytic Curves. (AM-12) by : Hermann Weyl
The description for this book, Meromorphic Functions and Analytic Curves. (AM-12), will be forthcoming.
Author |
: Pei-Chu Hu |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 308 |
Release |
: 2000-09-30 |
ISBN-10 |
: 0792365321 |
ISBN-13 |
: 9780792365327 |
Rating |
: 4/5 (21 Downloads) |
Synopsis Meromorphic Functions over non-Archimedean Fields by : Pei-Chu Hu
This book introduces value distribution theory over non-Archimedean fields, starting with a survey of two Nevanlinna-type main theorems and defect relations for meromorphic functions and holomorphic curves. Secondly, it gives applications of the above theory to, e.g., abc-conjecture, Waring's problem, uniqueness theorems for meromorphic functions, and Malmquist-type theorems for differential equations over non-Archimedean fields. Next, iteration theory of rational and entire functions over non-Archimedean fields and Schmidt's subspace theorems are studied. Finally, the book suggests some new problems for further research. Audience: This work will be of interest to graduate students working in complex or diophantine approximation as well as to researchers involved in the fields of analysis, complex function theory of one or several variables, and analytic spaces.
Author |
: Rick Miranda |
Publisher |
: American Mathematical Soc. |
Total Pages |
: 414 |
Release |
: 1995 |
ISBN-10 |
: 9780821802687 |
ISBN-13 |
: 0821802682 |
Rating |
: 4/5 (87 Downloads) |
Synopsis Algebraic Curves and Riemann Surfaces by : Rick Miranda
In this book, Miranda takes the approach that algebraic curves are best encountered for the first time over the complex numbers, where the reader's classical intuition about surfaces, integration, and other concepts can be brought into play. Therefore, many examples of algebraic curves are presented in the first chapters. In this way, the book begins as a primer on Riemann surfaces, with complex charts and meromorphic functions taking centre stage. But the main examples come fromprojective curves, and slowly but surely the text moves toward the algebraic category. Proofs of the Riemann-Roch and Serre Dualtiy Theorems are presented in an algebraic manner, via an adaptation of the adelic proof, expressed completely in terms of solving a Mittag-Leffler problem. Sheaves andcohomology are introduced as a unifying device in the later chapters, so that their utility and naturalness are immediately obvious. Requiring a background of one term of complex variable theory and a year of abstract algebra, this is an excellent graduate textbook for a second-term course in complex variables or a year-long course in algebraic geometry.
Author |
: Anatoliĭ Asirovich Golʹdberg |
Publisher |
: American Mathematical Soc. |
Total Pages |
: 488 |
Release |
: 2008 |
ISBN-10 |
: 082184265X |
ISBN-13 |
: 9780821842652 |
Rating |
: 4/5 (5X Downloads) |
Synopsis Value Distribution of Meromorphic Functions by : Anatoliĭ Asirovich Golʹdberg
"This book contains a comprehensive exposition of the Nevanlinna theory of meromorphic functions of one complex variable, with detailed study of deficiencies, value distribution, and asymptotic properties of meromorphic functions." "The main body of the book is a translation of the Russian original published in 1970, which has been one of the most popular sources in this field since then. New references and footnotes related to recent achievements in the topics considered in the original edition have been added and a few corrections made. A new Appendix with a survey of the results obtained after 1970 and extensive bibliography has been written by Alexandre Ermenko and James K. Langley for this English edition." "The only prerequisite for understanding material of this book is an undergraduate course in the theory of functions of one complex variable."--BOOK JACKET.
Author |
: Otto Forster |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 262 |
Release |
: 2012-12-06 |
ISBN-10 |
: 9781461259619 |
ISBN-13 |
: 1461259614 |
Rating |
: 4/5 (19 Downloads) |
Synopsis Lectures on Riemann Surfaces by : Otto Forster
This book grew out of lectures on Riemann surfaces given by Otto Forster at the universities of Munich, Regensburg, and Münster. It provides a concise modern introduction to this rewarding subject, as well as presenting methods used in the study of complex manifolds in the special case of complex dimension one. From the reviews: "This book deserves very serious consideration as a text for anyone contemplating giving a course on Riemann surfaces."—-MATHEMATICAL REVIEWS
Author |
: Peter D. Lax |
Publisher |
: American Mathematical Soc. |
Total Pages |
: 106 |
Release |
: 2011-12-21 |
ISBN-10 |
: 9780821875599 |
ISBN-13 |
: 0821875590 |
Rating |
: 4/5 (99 Downloads) |
Synopsis Complex Proofs of Real Theorems by : Peter D. Lax
Complex Proofs of Real Theorems is an extended meditation on Hadamard's famous dictum, ``The shortest and best way between two truths of the real domain often passes through the imaginary one.'' Directed at an audience acquainted with analysis at the first year graduate level, it aims at illustrating how complex variables can be used to provide quick and efficient proofs of a wide variety of important results in such areas of analysis as approximation theory, operator theory, harmonic analysis, and complex dynamics. Topics discussed include weighted approximation on the line, Muntz's theorem, Toeplitz operators, Beurling's theorem on the invariant spaces of the shift operator, prediction theory, the Riesz convexity theorem, the Paley-Wiener theorem, the Titchmarsh convolution theorem, the Gleason-Kahane-Zelazko theorem, and the Fatou-Julia-Baker theorem. The discussion begins with the world's shortest proof of the fundamental theorem of algebra and concludes with Newman's almost effortless proof of the prime number theorem. Four brief appendices provide all necessary background in complex analysis beyond the standard first year graduate course. Lovers of analysis and beautiful proofs will read and reread this slim volume with pleasure and profit.
Author |
: Barry Simon |
Publisher |
: American Mathematical Soc. |
Total Pages |
: 339 |
Release |
: 2015-11-02 |
ISBN-10 |
: 9781470411015 |
ISBN-13 |
: 1470411016 |
Rating |
: 4/5 (15 Downloads) |
Synopsis Advanced Complex Analysis by : Barry Simon
A Comprehensive Course in Analysis by Poincaré Prize winner Barry Simon is a five-volume set that can serve as a graduate-level analysis textbook with a lot of additional bonus information, including hundreds of problems and numerous notes that extend the text and provide important historical background. Depth and breadth of exposition make this set a valuable reference source for almost all areas of classical analysis. Part 2B provides a comprehensive look at a number of subjects of complex analysis not included in Part 2A. Presented in this volume are the theory of conformal metrics (including the Poincaré metric, the Ahlfors-Robinson proof of Picard's theorem, and Bell's proof of the Painlevé smoothness theorem), topics in analytic number theory (including Jacobi's two- and four-square theorems, the Dirichlet prime progression theorem, the prime number theorem, and the Hardy-Littlewood asymptotics for the number of partitions), the theory of Fuschian differential equations, asymptotic methods (including Euler's method, stationary phase, the saddle-point method, and the WKB method), univalent functions (including an introduction to SLE), and Nevanlinna theory. The chapters on Fuschian differential equations and on asymptotic methods can be viewed as a minicourse on the theory of special functions.
Author |
: Wilhelm Schlag |
Publisher |
: American Mathematical Society |
Total Pages |
: 402 |
Release |
: 2014-08-06 |
ISBN-10 |
: 9780821898475 |
ISBN-13 |
: 0821898477 |
Rating |
: 4/5 (75 Downloads) |
Synopsis A Course in Complex Analysis and Riemann Surfaces by : Wilhelm Schlag
Complex analysis is a cornerstone of mathematics, making it an essential element of any area of study in graduate mathematics. Schlag's treatment of the subject emphasizes the intuitive geometric underpinnings of elementary complex analysis that naturally lead to the theory of Riemann surfaces. The book begins with an exposition of the basic theory of holomorphic functions of one complex variable. The first two chapters constitute a fairly rapid, but comprehensive course in complex analysis. The third chapter is devoted to the study of harmonic functions on the disk and the half-plane, with an emphasis on the Dirichlet problem. Starting with the fourth chapter, the theory of Riemann surfaces is developed in some detail and with complete rigor. From the beginning, the geometric aspects are emphasized and classical topics such as elliptic functions and elliptic integrals are presented as illustrations of the abstract theory. The special role of compact Riemann surfaces is explained, and their connection with algebraic equations is established. The book concludes with three chapters devoted to three major results: the Hodge decomposition theorem, the Riemann-Roch theorem, and the uniformization theorem. These chapters present the core technical apparatus of Riemann surface theory at this level. This text is intended as a detailed, yet fast-paced intermediate introduction to those parts of the theory of one complex variable that seem most useful in other areas of mathematics, including geometric group theory, dynamics, algebraic geometry, number theory, and functional analysis. More than seventy figures serve to illustrate concepts and ideas, and the many problems at the end of each chapter give the reader ample opportunity for practice and independent study.
Author |
: Erhard Scholz |
Publisher |
: Birkhäuser |
Total Pages |
: 406 |
Release |
: 2012-12-06 |
ISBN-10 |
: 9783034882781 |
ISBN-13 |
: 3034882785 |
Rating |
: 4/5 (81 Downloads) |
Synopsis Hermann Weyl’s Raum - Zeit - Materie and a General Introduction to His Scientific Work by : Erhard Scholz
Historical interest and studies of Weyl's role in the interplay between 20th-century mathematics, physics and philosophy have been increasing since the middle 1980s, triggered by different activities at the occasion of the centenary of his birth in 1985, and are far from being exhausted. The present book takes Weyl's "Raum - Zeit - Materie" (Space - Time - Matter) as center of concentration and starting field for a broader look at his work. The contributions in the first part of this volume discuss Weyl's deep involvement in relativity, cosmology and matter theories between the classical unified field theories and quantum physics from the perspective of a creative mind struggling against theories of nature restricted by the view of classical determinism. In the second part of this volume, a broad and detailed introduction is given to Weyl's work in the mathematical sciences in general and in philosophy. It covers the whole range of Weyl's mathematical and physical interests: real analysis, complex function theory and Riemann surfaces, elementary ergodic theory, foundations of mathematics, differential geometry, general relativity, Lie groups, quantum mechanics, and number theory.
Author |
: Sergei K. Lando |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 463 |
Release |
: 2013-04-17 |
ISBN-10 |
: 9783540383611 |
ISBN-13 |
: 3540383611 |
Rating |
: 4/5 (11 Downloads) |
Synopsis Graphs on Surfaces and Their Applications by : Sergei K. Lando
Graphs drawn on two-dimensional surfaces have always attracted researchers by their beauty and by the variety of difficult questions to which they give rise. The theory of such embedded graphs, which long seemed rather isolated, has witnessed the appearance of entirely unexpected new applications in recent decades, ranging from Galois theory to quantum gravity models, and has become a kind of a focus of a vast field of research. The book provides an accessible introduction to this new domain, including such topics as coverings of Riemann surfaces, the Galois group action on embedded graphs (Grothendieck's theory of "dessins d'enfants"), the matrix integral method, moduli spaces of curves, the topology of meromorphic functions, and combinatorial aspects of Vassiliev's knot invariants and, in an appendix by Don Zagier, the use of finite group representation theory. The presentation is concrete throughout, with numerous figures, examples (including computer calculations) and exercises, and should appeal to both graduate students and researchers.