Mathematical Modeling of Physical Systems

Mathematical Modeling of Physical Systems
Author :
Publisher : Oxford University Press on Demand
Total Pages : 350
Release :
ISBN-10 : 0195153146
ISBN-13 : 9780195153149
Rating : 4/5 (46 Downloads)

Synopsis Mathematical Modeling of Physical Systems by : Diran Basmadjian

Both analytical and numerical methods are explained in enough detail to function as learning tools for the beginner or as refreshers for the more informed reader. Ideal for third-year engineering, mathematics, physics, and chemistry students."--BOOK JACKET.

Mathematical Modelling

Mathematical Modelling
Author :
Publisher : CRC Press
Total Pages : 466
Release :
ISBN-10 : 9781000503975
ISBN-13 : 1000503976
Rating : 4/5 (75 Downloads)

Synopsis Mathematical Modelling by : Simon Serovajsky

Mathematical Modelling sets out the general principles of mathematical modelling as a means comprehending the world. Within the book, the problems of physics, engineering, chemistry, biology, medicine, economics, ecology, sociology, psychology, political science, etc. are all considered through this uniform lens. The author describes different classes of models, including lumped and distributed parameter systems, deterministic and stochastic models, continuous and discrete models, static and dynamical systems, and more. From a mathematical point of view, the considered models can be understood as equations and systems of equations of different nature and variational principles. In addition to this, mathematical features of mathematical models, applied control and optimization problems based on mathematical models, and identification of mathematical models are also presented. Features Each chapter includes four levels: a lecture (main chapter material), an appendix (additional information), notes (explanations, technical calculations, literature review) and tasks for independent work; this is suitable for undergraduates and graduate students and does not require the reader to take any prerequisite course, but may be useful for researchers as well Described mathematical models are grouped both by areas of application and by the types of obtained mathematical problems, which contributes to both the breadth of coverage of the material and the depth of its understanding Can be used as the main textbook on a mathematical modelling course, and is also recommended for special courses on mathematical models for physics, chemistry, biology, economics, etc.

Mathematical Modeling for the Scientific Method

Mathematical Modeling for the Scientific Method
Author :
Publisher : Jones & Bartlett Learning
Total Pages : 521
Release :
ISBN-10 : 9780763779467
ISBN-13 : 0763779466
Rating : 4/5 (67 Downloads)

Synopsis Mathematical Modeling for the Scientific Method by : David Pravica

Part of the International Series in Mathematics Mathematical Modeling for the Scientific Method is intended for the sophomore/junior-level student seeking to be well-grounded in mathematical modeling for their studies in biology, the physical sciences, engineering, and/or medicine. It clarifies the connection between deductive and inductive reasoning as used in Mathematics and Science and urges students to think critically about concepts and applications. The authors’ goal is to be introductory in level while covering a broad range of techniques. They unite topics in statistics, linear algebra, calculus and differential equations, while discussing how these subjects are interrelated and utilized. Mathematical Modeling for the Scientific Method leaves students with a clearer perspective of the role of mathematics within the sciences and the understanding of how to rationally work through even rigorous applications with ease.

Mathematical and Experimental Modeling of Physical and Biological Processes

Mathematical and Experimental Modeling of Physical and Biological Processes
Author :
Publisher : CRC Press
Total Pages : 298
Release :
ISBN-10 : 1420073389
ISBN-13 : 9781420073386
Rating : 4/5 (89 Downloads)

Synopsis Mathematical and Experimental Modeling of Physical and Biological Processes by : H.T. Banks

Through several case study problems from industrial and scientific research laboratory applications, Mathematical and Experimental Modeling of Physical and Biological Processes provides students with a fundamental understanding of how mathematics is applied to problems in science and engineering. For each case study problem, the authors discuss why a model is needed and what goals can be achieved with the model. Exploring what mathematics can reveal about applications, the book focuses on the design of appropriate experiments to validate the development of mathematical models. It guides students through the modeling process, from empirical observations and formalization of properties to model analysis and interpretation of results. The authors also describe the hardware and software tools used to design the experiments so faculty/students can duplicate them. Integrating real-world applications into the traditional mathematics curriculum, this textbook deals with the formulation and analysis of mathematical models in science and engineering. It gives students an appreciation of the use of mathematics and encourages them to further study the applied topics. Real experimental data for projects can be downloaded from CRC Press Online.

The Nature of Mathematical Modeling

The Nature of Mathematical Modeling
Author :
Publisher : Cambridge University Press
Total Pages : 268
Release :
ISBN-10 : 0521570956
ISBN-13 : 9780521570954
Rating : 4/5 (56 Downloads)

Synopsis The Nature of Mathematical Modeling by : Neil A. Gershenfeld

This is a book about the nature of mathematical modeling, and about the kinds of techniques that are useful for modeling. The text is in four sections. The first covers exact and approximate analytical techniques; the second, numerical methods; the third, model inference based on observations; and the last, the special role of time in modeling. Each of the topics in the book would be the worthy subject of a dedicated text, but only by presenting the material in this way is it possible to make so much material accessible to so many people. Each chapter presents a concise summary of the core results in an area. The text is complemented by extensive worked problems.

Mathematical Modeling and Simulation

Mathematical Modeling and Simulation
Author :
Publisher : John Wiley & Sons
Total Pages : 362
Release :
ISBN-10 : 9783527627615
ISBN-13 : 3527627618
Rating : 4/5 (15 Downloads)

Synopsis Mathematical Modeling and Simulation by : Kai Velten

This concise and clear introduction to the topic requires only basic knowledge of calculus and linear algebra - all other concepts and ideas are developed in the course of the book. Lucidly written so as to appeal to undergraduates and practitioners alike, it enables readers to set up simple mathematical models on their own and to interpret their results and those of others critically. To achieve this, many examples have been chosen from various fields, such as biology, ecology, economics, medicine, agricultural, chemical, electrical, mechanical and process engineering, which are subsequently discussed in detail. Based on the author`s modeling and simulation experience in science and engineering and as a consultant, the book answers such basic questions as: What is a mathematical model? What types of models do exist? Which model is appropriate for a particular problem? What are simulation, parameter estimation, and validation? The book relies exclusively upon open-source software which is available to everybody free of charge. The entire book software - including 3D CFD and structural mechanics simulation software - can be used based on a free CAELinux-Live-DVD that is available in the Internet (works on most machines and operating systems).

Mathematical Modeling of Natural Phenomena

Mathematical Modeling of Natural Phenomena
Author :
Publisher :
Total Pages : 0
Release :
ISBN-10 : 1536129771
ISBN-13 : 9781536129779
Rating : 4/5 (71 Downloads)

Synopsis Mathematical Modeling of Natural Phenomena by : Ranis Ibragimov

Mathematical modeling in the form of differential equations is a branch of applied mathematics that includes topics from physics, engineering, environmental and computer science. The mathematical model is an approximate description of real processes. Mathematical modeling can be thought of as a three step process: 1) Physical situation; 2) Mathematical formulation; 3) Solution by purely operations of the mathematical problem; 4) Physical interpretation of the mathematical solution. Over the centuries, Step 2 took on a life of its own. Mathematics was studied on its own, devoid of any contact with a physical problem; this is known as pure mathematics. Applied mathematics and mathematical modeling deals with all three steps. Improvements of approximations or their extensions to more general situations may increase the complexity of mathematical models significantly. Before the 18th century, applied mathematics and its methods received the close attention of the best mathematicians who were driven by a desire to develop approximate descriptions of natural phenomena. The goal of asymptotic and perturbation methods is to find useful, approximate solutions to difficult problems that arise from the desire to understand a physical process. Exact solutions are usually either impossible to obtain or too complicated to be useful. Approximate, useful solutions are often tested by comparison with experiments or observations rather than by rigorous mathematical methods. Hence, the authors will not be concerned with rigorous proofs in this book. The derivation of approximate solutions can be done in two different ways. First, one can find an approximate set of equations that can be solved, or, one can find an approximate solution of a set of equations. Usually one must do both. Models of natural science show that the possibilities of applying differential equations for solving problems in the disciplines of the natural scientific cycle are quite wide. This book represents a unique blend of the traditional analytical and numerical methods enriched by the authors developments and applications to ocean and atmospheric sciences. The overall viewpoint taken is a theoretical, unified approach to the study of both the atmosphere and the oceans. One of the key features in this book is the combination of approximate forms of the basic mathematical equations of mathematical modeling with careful and precise analysis. The approximations are required to make any progress possible, while precision is needed to make the progress meaningful. This combination is often the most elusive for student to appreciate. This book aims to highlight this issue by means of accurate derivation of mathematical models with precise analysis and MATLAB applications. This book is meant for undergraduate and graduate students interested in applied mathematics, differential equations and mathematical modeling of real world problems. This book might also be interested in experts working in the field of physics concerning the ocean and atmosphere.

An Introduction to Mathematical Modeling

An Introduction to Mathematical Modeling
Author :
Publisher : John Wiley & Sons
Total Pages : 348
Release :
ISBN-10 : 9781118105740
ISBN-13 : 1118105745
Rating : 4/5 (40 Downloads)

Synopsis An Introduction to Mathematical Modeling by : J. Tinsley Oden

A modern approach to mathematical modeling, featuring unique applications from the field of mechanics An Introduction to Mathematical Modeling: A Course in Mechanics is designed to survey the mathematical models that form the foundations of modern science and incorporates examples that illustrate how the most successful models arise from basic principles in modern and classical mathematical physics. Written by a world authority on mathematical theory and computational mechanics, the book presents an account of continuum mechanics, electromagnetic field theory, quantum mechanics, and statistical mechanics for readers with varied backgrounds in engineering, computer science, mathematics, and physics. The author streamlines a comprehensive understanding of the topic in three clearly organized sections: Nonlinear Continuum Mechanics introduces kinematics as well as force and stress in deformable bodies; mass and momentum; balance of linear and angular momentum; conservation of energy; and constitutive equations Electromagnetic Field Theory and Quantum Mechanics contains a brief account of electromagnetic wave theory and Maxwell's equations as well as an introductory account of quantum mechanics with related topics including ab initio methods and Spin and Pauli's principles Statistical Mechanics presents an introduction to statistical mechanics of systems in thermodynamic equilibrium as well as continuum mechanics, quantum mechanics, and molecular dynamics Each part of the book concludes with exercise sets that allow readers to test their understanding of the presented material. Key theorems and fundamental equations are highlighted throughout, and an extensive bibliography outlines resources for further study. Extensively class-tested to ensure an accessible presentation, An Introduction to Mathematical Modeling is an excellent book for courses on introductory mathematical modeling and statistical mechanics at the upper-undergraduate and graduate levels. The book also serves as a valuable reference for professionals working in the areas of modeling and simulation, physics, and computational engineering.

Mathematical Modeling in Science and Engineering

Mathematical Modeling in Science and Engineering
Author :
Publisher : John Wiley & Sons
Total Pages : 259
Release :
ISBN-10 : 9781118207208
ISBN-13 : 1118207203
Rating : 4/5 (08 Downloads)

Synopsis Mathematical Modeling in Science and Engineering by : Ismael Herrera

A powerful, unified approach to mathematical and computational modeling in science and engineering Mathematical and computational modeling makes it possible to predict the behavior of a broad range of systems across a broad range of disciplines. This text guides students and professionals through the axiomatic approach, a powerful method that will enable them to easily master the principle types of mathematical and computational models used in engineering and science. Readers will discover that this axiomatic approach not only enables them to systematically construct effective models, it also enables them to apply these models to any macroscopic physical system. Mathematical Modeling in Science and Engineering focuses on models in which the processes to be modeled are expressed as systems of partial differential equations. It begins with an introductory discussion of the axiomatic formulation of basic models, setting the foundation for further topics such as: Mechanics of classical and non-classical continuous systems Solute transport by a free fluid Flow of a fluid in a porous medium Multiphase systems Enhanced oil recovery Fluid mechanics Throughout the text, diagrams are provided to help readers visualize and better understand complex mathematical concepts. A set of exercises at the end of each chapter enables readers to put their new modeling skills into practice. There is also a bibliography in each chapter to facilitate further investigation of individual topics. Mathematical Modeling in Science and Engineering is ideal for both students and professionals across the many disciplines of science and engineering that depend on mathematical and computational modeling to predict and understand complex systems.

An Introduction to Mathematical Modeling

An Introduction to Mathematical Modeling
Author :
Publisher : Courier Corporation
Total Pages : 273
Release :
ISBN-10 : 9780486137124
ISBN-13 : 0486137120
Rating : 4/5 (24 Downloads)

Synopsis An Introduction to Mathematical Modeling by : Edward A. Bender

Employing a practical, "learn by doing" approach, this first-rate text fosters the development of the skills beyond the pure mathematics needed to set up and manipulate mathematical models. The author draws on a diversity of fields — including science, engineering, and operations research — to provide over 100 reality-based examples. Students learn from the examples by applying mathematical methods to formulate, analyze, and criticize models. Extensive documentation, consisting of over 150 references, supplements the models, encouraging further research on models of particular interest. The lively and accessible text requires only minimal scientific background. Designed for senior college or beginning graduate-level students, it assumes only elementary calculus and basic probability theory for the first part, and ordinary differential equations and continuous probability for the second section. All problems require students to study and create models, encouraging their active participation rather than a mechanical approach. Beyond the classroom, this volume will prove interesting and rewarding to anyone concerned with the development of mathematical models or the application of modeling to problem solving in a wide array of applications.