LESFOIL: Large Eddy Simulation of Flow Around a High Lift Airfoil

LESFOIL: Large Eddy Simulation of Flow Around a High Lift Airfoil
Author :
Publisher : Springer Science & Business Media
Total Pages : 246
Release :
ISBN-10 : 9783540364573
ISBN-13 : 3540364579
Rating : 4/5 (73 Downloads)

Synopsis LESFOIL: Large Eddy Simulation of Flow Around a High Lift Airfoil by : Lars Davidson

Large Eddy Simulation is a relatively new and still evolving computatio nal strategy for predicting turbulent flows. It is now widely used in research to elucidate fundamental interactions in physics of turbulence, to predict phe nomena which are closely linked to the unsteady features of turbulence and to create data bases against which statistical closure models can be asses sed. However, its applicability to complex industrial flows, to which statisti cal models are applied routinely, has not been established with any degree of confidence. There is, in particular, a question mark against the prospect of LES becoming an economically tenable alternative to Reynolds-averaged N avier-Stokes methods at practically high Reynolds numbers and in complex geometries. Aerospace flows pose particularly challenging problems to LES, because of the high Reynolds numbers involved, the need to resolve accura tely small-scale features in the thin and often transitional boundary layers developing on aerodynamic surfaces. When the flow also contains a separated region - due to high incidence, say - the range and disparity of the influen tial scales to be resolved is enormous, and this substantially aggravates the problems of resolution and cost. It is just this combination of circumstances that has been at the heart of the project LESFOIL to which this book is devoted. The project combined the efforts, resources and expertise of 9 partner organisations, 4 universities, 3 industrial companies and 2 research institu tes.

High Performance Computing in Science and Engineering 2000

High Performance Computing in Science and Engineering 2000
Author :
Publisher : Springer Science & Business Media
Total Pages : 546
Release :
ISBN-10 : 9783642565489
ISBN-13 : 3642565484
Rating : 4/5 (89 Downloads)

Synopsis High Performance Computing in Science and Engineering 2000 by : E. Krause

An overview of recent developments in high performance computing and simulation, with special emphasis on the industrial relevance of the presented results and methods. The book showcases an innovative combination of the state-of-the-art modeling, novel numerical algorithms and the use of leading-edge high-performance computing systems.

Unsteady Computational Fluid Dynamics in Aeronautics

Unsteady Computational Fluid Dynamics in Aeronautics
Author :
Publisher : Springer Science & Business Media
Total Pages : 432
Release :
ISBN-10 : 9789400770492
ISBN-13 : 9400770499
Rating : 4/5 (92 Downloads)

Synopsis Unsteady Computational Fluid Dynamics in Aeronautics by : P.G. Tucker

The field of Large Eddy Simulation (LES) and hybrids is a vibrant research area. This book runs through all the potential unsteady modelling fidelity ranges, from low-order to LES. The latter is probably the highest fidelity for practical aerospace systems modelling. Cutting edge new frontiers are defined. One example of a pressing environmental concern is noise. For the accurate prediction of this, unsteady modelling is needed. Hence computational aeroacoustics is explored. It is also emerging that there is a critical need for coupled simulations. Hence, this area is also considered and the tensions of utilizing such simulations with the already expensive LES. This work has relevance to the general field of CFD and LES and to a wide variety of non-aerospace aerodynamic systems (e.g. cars, submarines, ships, electronics, buildings). Topics treated include unsteady flow techniques; LES and hybrids; general numerical methods; computational aeroacoustics; computational aeroelasticity; coupled simulations and turbulence and its modelling (LES, RANS, transition, VLES, URANS). The volume concludes by pointing forward to future horizons and in particular the industrial use of LES. The writing style is accessible and useful to both academics and industrial practitioners. From the reviews: "Tucker's volume provides a very welcome, concise discussion of current capabilities for simulating and modellng unsteady aerodynamic flows. It covers the various pos sible numerical techniques in good, clear detail and presents a very wide range of practical applications; beautifully illustrated in many cases. This book thus provides a valuable text for practicing engineers, a rich source of background information for students and those new to this area of Research & Development, and an excellent state-of-the-art review for others. A great achievement." Mark Savill FHEA, FRAeS, C.Eng, Professor of Computational Aerodynamics Design & Head of Power & Propulsion Sciences, Department of Power & Propulsion, School of Engineering, Cranfield University, Bedfordshire, U.K. "This is a very useful book with a wide coverage of many aspects in unsteady aerodynamics method development and applications for internal and external flows." L. He, Rolls-Royce/RAEng Chair of Computational Aerothermal Engineering, Oxford University, U.K. "This comprehensive book ranges from classical concepts in both numerical methods and turbulence modelling approaches for the beginner to latest state-of-the-art for the advanced practitioner and constitutes an extremely valuable contribution to the specific Computational Fluid Dynamics literature in Aeronautics. Student and expert alike will benefit greatly by reading it from cover to cover." Sébastien Deck, Onera, Meudon, France

Direct and Large-Eddy Simulation IV

Direct and Large-Eddy Simulation IV
Author :
Publisher : Springer Science & Business Media
Total Pages : 543
Release :
ISBN-10 : 9789401712637
ISBN-13 : 9401712638
Rating : 4/5 (37 Downloads)

Synopsis Direct and Large-Eddy Simulation IV by : Bernard Geurts

This volume contains the proceedings of the 2001 DLES4 workshop. It describes and discusses state-of-the-art modeling and simulation approaches for complex flows. Fundamental turbulence and modeling issues but also elements from modern numerical analysis are at the heart of this field of interest.

High Performance Computing in Science and Engineering, Munich 2004

High Performance Computing in Science and Engineering, Munich 2004
Author :
Publisher : Springer Science & Business Media
Total Pages : 469
Release :
ISBN-10 : 9783540266570
ISBN-13 : 3540266577
Rating : 4/5 (70 Downloads)

Synopsis High Performance Computing in Science and Engineering, Munich 2004 by : Siegfried Wagner

Leading-edge research groups in the field of scientific computing present their outstanding projects using the High Performance Computer in Bavaria (HLRB), Hitachi SR8000-F1, one of the top-level supercomputers for academic research in Germany. The projects address modelling and simulation in the disciplines Biosciences, Chemistry, Chemical Physics, Solid-State Physics, High-Energy Physics, Astrophysics, Geophysics, Computational Fluid Dynamics, and Computer Science. The authors describe their scientific background, their resource requirements with respect to top-level supercomputers, and their methods for efficient utilization of the costly high-performance computing power. Contributions of interdisciplinary research projects that have been supported by the Competence Network for Scientific High Performance Computing in Bavaria (KONWIHR) complete the broad range of supercomputer research and applications covered by this volume.

Engineering Turbulence Modelling and Experiments 6

Engineering Turbulence Modelling and Experiments 6
Author :
Publisher : Elsevier
Total Pages : 1011
Release :
ISBN-10 : 9780080530956
ISBN-13 : 0080530958
Rating : 4/5 (56 Downloads)

Synopsis Engineering Turbulence Modelling and Experiments 6 by : Wolfgang Rodi

Proceedings of the world renowned ERCOFTAC (International Symposium on Engineering Turbulence Modelling and Measurements).The proceedings include papers dealing with the following areas of turbulence:·Eddy-viscosity and second-order RANS models ·Direct and large-eddy simulations and deductions for conventional modelling ·Measurement and visualization techniques, experimental studies ·Turbulence control ·Transition and effects of curvature, rotation and buoyancy on turbulence ·Aero-acoustics ·Heat and mass transfer and chemically reacting flows ·Compressible flows, shock phenomena ·Two-phase flows ·Applications in aerospace engineering, turbomachinery and reciprocating engines, industrial aerodynamics and wind engineering, and selected chemical engineering problems Turbulence remains one of the key issues in tackling engineering flow problems. These problems are solved more and more by CFD analysis, the reliability of which depends strongly on the performance of the turbulence models employed. Successful simulation of turbulence requires the understanding of the complex physical phenomena involved and suitable models for describing the turbulent momentum, heat and mass transfer. For the understanding of turbulence phenomena, experiments are indispensable, but they are equally important for providing data for the development and testing of turbulence models and hence for CFD software validation. As in other fields of Science, in the rapidly developing discipline of turbulence, swift progress can be achieved only by keeping up to date with recent advances all over the world and by exchanging ideas with colleagues active in related fields.

Active Flow Control II

Active Flow Control II
Author :
Publisher : Springer Science & Business Media
Total Pages : 417
Release :
ISBN-10 : 9783642117350
ISBN-13 : 364211735X
Rating : 4/5 (50 Downloads)

Synopsis Active Flow Control II by : Rudibert King

The interest in the field of active flow control (AFC) is steadily increasing. In - cent years the number of conferences and special sessions devoted to AFC org- ized by various institutions around the world continuously rises. New advanced courses for AFC are offered by the American Institute of Aeronautics and Ast- nautics (AIAA), the European Research Community on Flow, Turbulence and Combustion (ERCOFTAC), the International Centre for Mechanical Sciences (CISM), the von Karman Institute for Fluid Dynamics (VKI), to name just a few. New books on AFC are published by prominent colleagues of our field and even a new periodical, the ‘International Journal of Flow Control’, appeared. Despite these many activities in AFC it was felt that a follow-up of the highly successful ‘ACTIVE FLOW CONTROL’ Conference held in Berlin in 2006 was appropriate. As in 2006, ‘ACTIVE FLOW CONTROL II’ consisted only of invited lectures. To sti- late multidisciplinary discussions between experimental, theoretical and numerical fluid dynamics, aerodynamics, turbomachinary, mathematics, control engineering, metrology and computer science parallel sessions were excluded. Unfortunately, not all of the presented papers made it into this volume. As the preparation and printing of a book takes time and as this volume should be available at the conf- ence, the Local Organizing Committee had to set up a very ambitious time sch- ule which could not be met by all contributors.

Error Control, Adaptive Discretizations, and Applications, Part 1

Error Control, Adaptive Discretizations, and Applications, Part 1
Author :
Publisher : Elsevier
Total Pages : 446
Release :
ISBN-10 : 9780443294495
ISBN-13 : 0443294496
Rating : 4/5 (95 Downloads)

Synopsis Error Control, Adaptive Discretizations, and Applications, Part 1 by :

Error Control, Adaptive Discretizations, and Applications, Volume 58, Part One highlights new advances in the field, with this new volume presenting interesting chapters written by an international board of authors. Chapters in this release cover hp adaptive Discontinuous Galerkin strategies driven by a posteriori error estimation with application to aeronautical flow problems, An anisotropic mesh adaptation method based on gradient recovery and optimal shape elements, and Model reduction techniques for parametrized nonlinear partial differential equations. - Covers multi-scale modeling - Includes updates on data-driven modeling - Presents the latest information on large deformations of multi-scale materials

Fundamental Medical and Engineering Investigations on Protective Artificial Respiration

Fundamental Medical and Engineering Investigations on Protective Artificial Respiration
Author :
Publisher : Springer Science & Business Media
Total Pages : 191
Release :
ISBN-10 : 9783642203268
ISBN-13 : 3642203264
Rating : 4/5 (68 Downloads)

Synopsis Fundamental Medical and Engineering Investigations on Protective Artificial Respiration by : Michael Klaas

This volume contains a collection of papers from the research program “Protective Artificial Respiration (PAR)”. In 2005 the German Research Association DFG launched the research program PAR which is a joint initiative of medicine and fluid mechanics. The main long-term objective of this program is the development of a more protective artificial respiratory system to reduce the physical stress of patients undergoing artificial respiration. To satisfy this goal 11 projects have been defined. In each of these projects scientists from medicine and fluid mechanics do collaborate in several experimental and numerical investigations to improve the fundamental knowledge on respiration and to develop a more individual artificial breathing concept.