Guide To Mathematical Methods For Physicists A Advanced Topics And Applications
Download Guide To Mathematical Methods For Physicists A Advanced Topics And Applications full books in PDF, epub, and Kindle. Read online free Guide To Mathematical Methods For Physicists A Advanced Topics And Applications ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads.
Author |
: Michela Petrini |
Publisher |
: World Scientific Publishing Company |
Total Pages |
: 339 |
Release |
: 2017-07-07 |
ISBN-10 |
: 9781786343468 |
ISBN-13 |
: 1786343460 |
Rating |
: 4/5 (68 Downloads) |
Synopsis Guide To Mathematical Methods For Physicists, A: With Problems And Solutions by : Michela Petrini
Mathematics plays a fundamental role in the formulation of physical theories. This textbook provides a self-contained and rigorous presentation of the main mathematical tools needed in many fields of Physics, both classical and quantum. It covers topics treated in mathematics courses for final-year undergraduate and graduate physics programmes, including complex function: distributions, Fourier analysis, linear operators, Hilbert spaces and eigenvalue problems. The different topics are organised into two main parts — complex analysis and vector spaces — in order to stress how seemingly different mathematical tools, for instance the Fourier transform, eigenvalue problems or special functions, are all deeply interconnected. Also contained within each chapter are fully worked examples, problems and detailed solutions. A companion volume covering more advanced topics that enlarge and deepen those treated here is also available.
Author |
: H. W. Wyld |
Publisher |
: CRC Press |
Total Pages |
: 395 |
Release |
: 2018-03-14 |
ISBN-10 |
: 9780429978647 |
ISBN-13 |
: 0429978642 |
Rating |
: 4/5 (47 Downloads) |
Synopsis Mathematical Methods For Physics by : H. W. Wyld
This classic book helps students learn the basics in physics by bridging the gap between mathematics and the basic fundamental laws of physics. With supplemental material such as graphs and equations, Mathematical Methods for Physics creates a strong, solid anchor of learning. The text has three parts: Part I focuses on the use of special functions in solving the homogeneous partial differential equations of physics, and emphasizes applications to topics such as electrostatics, wave guides, and resonant cavities, vibrations of membranes, heat flow, potential flow in fluids, plane and spherical waves. Part II deals with the solution of inhomogeneous differential equations with particular emphasis on problems in electromagnetism, Green's functions for Poisson's equation, the wave equation and the diffusion equation, and the solution of integral equations by iteration, eigenfunction expansion and the Fredholm series. Finally, Part II explores complex variable techniques, including evalution of itegrals, dispersion relations, special functions in the complex plane, one-sided Fourier transforms, and Laplace transforms.
Author |
: George Brown Arfken |
Publisher |
: Academic Press |
Total Pages |
: 1230 |
Release |
: 2013 |
ISBN-10 |
: 9780123846549 |
ISBN-13 |
: 0123846544 |
Rating |
: 4/5 (49 Downloads) |
Synopsis Mathematical Methods for Physicists by : George Brown Arfken
Table of Contents Mathematical Preliminaries Determinants and Matrices Vector Analysis Tensors and Differential Forms Vector Spaces Eigenvalue Problems Ordinary Differential Equations Partial Differential Equations Green's Functions Complex Variable Theory Further Topics in Analysis Gamma Function Bessel Functions Legendre Functions Angular Momentum Group Theory More Special Functions Fourier Series Integral Transforms Periodic Systems Integral Equations Mathieu Functions Calculus of Variations Probability and Statistics.
Author |
: Sadri Hassani |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 673 |
Release |
: 2013-11-11 |
ISBN-10 |
: 9780387215624 |
ISBN-13 |
: 038721562X |
Rating |
: 4/5 (24 Downloads) |
Synopsis Mathematical Methods by : Sadri Hassani
Intended to follow the usual introductory physics courses, this book contains many original, lucid and relevant examples from the physical sciences, problems at the ends of chapters, and boxes to emphasize important concepts to help guide students through the material.
Author |
: R. Shankar |
Publisher |
: Springer |
Total Pages |
: 371 |
Release |
: 2013-12-20 |
ISBN-10 |
: 9781489967985 |
ISBN-13 |
: 1489967982 |
Rating |
: 4/5 (85 Downloads) |
Synopsis Basic Training in Mathematics by : R. Shankar
Based on course material used by the author at Yale University, this practical text addresses the widening gap found between the mathematics required for upper-level courses in the physical sciences and the knowledge of incoming students. This superb book offers students an excellent opportunity to strengthen their mathematical skills by solving various problems in differential calculus. By covering material in its simplest form, students can look forward to a smooth entry into any course in the physical sciences.
Author |
: Carl M. Bender |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 605 |
Release |
: 2013-03-09 |
ISBN-10 |
: 9781475730692 |
ISBN-13 |
: 1475730691 |
Rating |
: 4/5 (92 Downloads) |
Synopsis Advanced Mathematical Methods for Scientists and Engineers I by : Carl M. Bender
A clear, practical and self-contained presentation of the methods of asymptotics and perturbation theory for obtaining approximate analytical solutions to differential and difference equations. Aimed at teaching the most useful insights in approaching new problems, the text avoids special methods and tricks that only work for particular problems. Intended for graduates and advanced undergraduates, it assumes only a limited familiarity with differential equations and complex variables. The presentation begins with a review of differential and difference equations, then develops local asymptotic methods for such equations, and explains perturbation and summation theory before concluding with an exposition of global asymptotic methods. Emphasizing applications, the discussion stresses care rather than rigor and relies on many well-chosen examples to teach readers how an applied mathematician tackles problems. There are 190 computer-generated plots and tables comparing approximate and exact solutions, over 600 problems of varying levels of difficulty, and an appendix summarizing the properties of special functions.
Author |
: Sadri Hassani |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 1052 |
Release |
: 2002-02-08 |
ISBN-10 |
: 0387985794 |
ISBN-13 |
: 9780387985794 |
Rating |
: 4/5 (94 Downloads) |
Synopsis Mathematical Physics by : Sadri Hassani
For physics students interested in the mathematics they use, and for math students interested in seeing how some of the ideas of their discipline find realization in an applied setting. The presentation strikes a balance between formalism and application, between abstract and concrete. The interconnections among the various topics are clarified both by the use of vector spaces as a central unifying theme, recurring throughout the book, and by putting ideas into their historical context. Enough of the essential formalism is included to make the presentation self-contained.
Author |
: Bernard F. Schutz |
Publisher |
: Cambridge University Press |
Total Pages |
: 272 |
Release |
: 1980-01-28 |
ISBN-10 |
: 9781107268142 |
ISBN-13 |
: 1107268141 |
Rating |
: 4/5 (42 Downloads) |
Synopsis Geometrical Methods of Mathematical Physics by : Bernard F. Schutz
In recent years the methods of modern differential geometry have become of considerable importance in theoretical physics and have found application in relativity and cosmology, high-energy physics and field theory, thermodynamics, fluid dynamics and mechanics. This textbook provides an introduction to these methods - in particular Lie derivatives, Lie groups and differential forms - and covers their extensive applications to theoretical physics. The reader is assumed to have some familiarity with advanced calculus, linear algebra and a little elementary operator theory. The advanced physics undergraduate should therefore find the presentation quite accessible. This account will prove valuable for those with backgrounds in physics and applied mathematics who desire an introduction to the subject. Having studied the book, the reader will be able to comprehend research papers that use this mathematics and follow more advanced pure-mathematical expositions.
Author |
: Kenneth Franklin Riley |
Publisher |
: |
Total Pages |
: 1008 |
Release |
: 1997 |
ISBN-10 |
: OCLC:641793457 |
ISBN-13 |
: |
Rating |
: 4/5 (57 Downloads) |
Synopsis Mathematical Methods for Physics and Engineering by : Kenneth Franklin Riley
Author |
: Michael Stone |
Publisher |
: Cambridge University Press |
Total Pages |
: 821 |
Release |
: 2009-07-09 |
ISBN-10 |
: 9781139480611 |
ISBN-13 |
: 1139480618 |
Rating |
: 4/5 (11 Downloads) |
Synopsis Mathematics for Physics by : Michael Stone
An engagingly-written account of mathematical tools and ideas, this book provides a graduate-level introduction to the mathematics used in research in physics. The first half of the book focuses on the traditional mathematical methods of physics – differential and integral equations, Fourier series and the calculus of variations. The second half contains an introduction to more advanced subjects, including differential geometry, topology and complex variables. The authors' exposition avoids excess rigor whilst explaining subtle but important points often glossed over in more elementary texts. The topics are illustrated at every stage by carefully chosen examples, exercises and problems drawn from realistic physics settings. These make it useful both as a textbook in advanced courses and for self-study. Password-protected solutions to the exercises are available to instructors at www.cambridge.org/9780521854030.