Handbook of Knowledge Representation

Handbook of Knowledge Representation
Author :
Publisher : Elsevier
Total Pages : 1035
Release :
ISBN-10 : 9780080557021
ISBN-13 : 0080557023
Rating : 4/5 (21 Downloads)

Synopsis Handbook of Knowledge Representation by : Frank van Harmelen

Handbook of Knowledge Representation describes the essential foundations of Knowledge Representation, which lies at the core of Artificial Intelligence (AI). The book provides an up-to-date review of twenty-five key topics in knowledge representation, written by the leaders of each field. It includes a tutorial background and cutting-edge developments, as well as applications of Knowledge Representation in a variety of AI systems. This handbook is organized into three parts. Part I deals with general methods in Knowledge Representation and reasoning and covers such topics as classical logic in Knowledge Representation; satisfiability solvers; description logics; constraint programming; conceptual graphs; nonmonotonic reasoning; model-based problem solving; and Bayesian networks. Part II focuses on classes of knowledge and specialized representations, with chapters on temporal representation and reasoning; spatial and physical reasoning; reasoning about knowledge and belief; temporal action logics; and nonmonotonic causal logic. Part III discusses Knowledge Representation in applications such as question answering; the semantic web; automated planning; cognitive robotics; multi-agent systems; and knowledge engineering. This book is an essential resource for graduate students, researchers, and practitioners in knowledge representation and AI. * Make your computer smarter* Handle qualitative and uncertain information* Improve computational tractability to solve your problems easily

Knowledge Representation and Reasoning

Knowledge Representation and Reasoning
Author :
Publisher : Morgan Kaufmann
Total Pages : 414
Release :
ISBN-10 : 9781558609327
ISBN-13 : 1558609326
Rating : 4/5 (27 Downloads)

Synopsis Knowledge Representation and Reasoning by : Ronald Brachman

Knowledge representation is at the very core of a radical idea for understanding intelligence. This book talks about the central concepts of knowledge representation developed over the years. It is suitable for researchers and practitioners in database management, information retrieval, object-oriented systems and artificial intelligence.

Graph-based Knowledge Representation

Graph-based Knowledge Representation
Author :
Publisher : Springer Science & Business Media
Total Pages : 428
Release :
ISBN-10 : 9781848002869
ISBN-13 : 1848002866
Rating : 4/5 (69 Downloads)

Synopsis Graph-based Knowledge Representation by : Michel Chein

This book provides a de?nition and study of a knowledge representation and r- soning formalism stemming from conceptual graphs, while focusing on the com- tational properties of this formalism. Knowledge can be symbolically represented in many ways. The knowledge representation and reasoning formalism presented here is a graph formalism – knowledge is represented by labeled graphs, in the graph theory sense, and r- soning mechanisms are based on graph operations, with graph homomorphism at the core. This formalism can thus be considered as related to semantic networks. Since their conception, semantic networks have faded out several times, but have always returned to the limelight. They faded mainly due to a lack of formal semantics and the limited reasoning tools proposed. They have, however, always rebounded - cause labeled graphs, schemas and drawings provide an intuitive and easily und- standable support to represent knowledge. This formalism has the visual qualities of any graphic model, and it is logically founded. This is a key feature because logics has been the foundation for knowledge representation and reasoning for millennia. The authors also focus substantially on computational facets of the presented formalism as they are interested in knowledge representation and reasoning formalisms upon which knowledge-based systems can be built to solve real problems. Since object structures are graphs, naturally graph homomorphism is the key underlying notion and, from a computational viewpoint, this moors calculus to combinatorics and to computer science domains in which the algorithmicqualitiesofgraphshavelongbeenstudied,asindatabasesandconstraint networks.

Foundations of Biomedical Knowledge Representation

Foundations of Biomedical Knowledge Representation
Author :
Publisher : Springer
Total Pages : 336
Release :
ISBN-10 : 9783319280073
ISBN-13 : 3319280074
Rating : 4/5 (73 Downloads)

Synopsis Foundations of Biomedical Knowledge Representation by : Arjen Hommersom

Medicine and health care are currently faced with a significant rise in their complexity. This is partly due to the progress made during the past three decades in the fundamental biological understanding of the causes of health and disease at the molecular, (sub)cellular, and organ level. Since the end of the 1970s, when knowledge representation and reasoning in the biomedical field became a separate area of research, huge progress has been made in the development of methods and tools that are finally able to impact on the way medicine is being practiced. Even though there are huge differences in the techniques and methods used by biomedical researchers, there is now an increasing tendency to share research results in terms of formal knowledge representation methods, such as ontologies, statistical models, network models, and mathematical models. As there is an urgent need for health-care professionals to make better decisions, computer-based support using this knowledge is now becoming increasingly important. It may also be the only way to integrate research results from the different parts of the spectrum of biomedical and clinical research. The aim of this book is to shed light on developments in knowledge representation at different levels of biomedical application, ranging from human biology to clinical guidelines, and using different techniques, from probability theory and differential equations to logic. The book starts with two introductory chapters followed by 18 contributions organized in the following topical sections: diagnosis of disease; monitoring of health and disease and conformance; assessment of health and personalization; prediction and prognosis of health and disease; treatment of disease; and recommendations.

Knowledge Representation

Knowledge Representation
Author :
Publisher :
Total Pages : 594
Release :
ISBN-10 : 711112149X
ISBN-13 : 9787111121497
Rating : 4/5 (9X Downloads)

Synopsis Knowledge Representation by : John F. Sowa

The Logic of Knowledge Bases

The Logic of Knowledge Bases
Author :
Publisher : MIT Press
Total Pages : 316
Release :
ISBN-10 : 0262263491
ISBN-13 : 9780262263498
Rating : 4/5 (91 Downloads)

Synopsis The Logic of Knowledge Bases by : Hector J. Levesque

This book describes in detail the relationship between symbolic representations of knowledge and abstract states of knowledge, exploring along the way the foundations of knowledge, knowledge bases, knowledge-based systems, and knowledge representation and reasoning. The idea of knowledge bases lies at the heart of symbolic, or "traditional," artificial intelligence. A knowledge-based system decides how to act by running formal reasoning procedures over a body of explicitly represented knowledge—a knowledge base. The system is not programmed for specific tasks; rather, it is told what it needs to know and expected to infer the rest. This book is about the logic of such knowledge bases. It describes in detail the relationship between symbolic representations of knowledge and abstract states of knowledge, exploring along the way the foundations of knowledge, knowledge bases, knowledge-based systems, and knowledge representation and reasoning. Assuming some familiarity with first-order predicate logic, the book offers a new mathematical model of knowledge that is general and expressive yet more workable in practice than previous models. The book presents a style of semantic argument and formal analysis that would be cumbersome or completely impractical with other approaches. It also shows how to treat a knowledge base as an abstract data type, completely specified in an abstract way by the knowledge-level operations defined over it.

Logical Foundations of Artificial Intelligence

Logical Foundations of Artificial Intelligence
Author :
Publisher : Morgan Kaufmann
Total Pages : 427
Release :
ISBN-10 : 9780128015544
ISBN-13 : 0128015543
Rating : 4/5 (44 Downloads)

Synopsis Logical Foundations of Artificial Intelligence by : Michael R. Genesereth

Intended both as a text for advanced undergraduates and graduate students, and as a key reference work for AI researchers and developers, Logical Foundations of Artificial Intelligence is a lucid, rigorous, and comprehensive account of the fundamentals of artificial intelligence from the standpoint of logic. The first section of the book introduces the logicist approach to AI--discussing the representation of declarative knowledge and featuring an introduction to the process of conceptualization, the syntax and semantics of predicate calculus, and the basics of other declarative representations such as frames and semantic nets. This section also provides a simple but powerful inference procedure, resolution, and shows how it can be used in a reasoning system. The next several chapters discuss nonmonotonic reasoning, induction, and reasoning under uncertainty, broadening the logical approach to deal with the inadequacies of strict logical deduction. The third section introduces modal operators that facilitate representing and reasoning about knowledge. This section also develops the process of writing predicate calculus sentences to the metalevel--to permit sentences about sentences and about reasoning processes. The final three chapters discuss the representation of knowledge about states and actions, planning, and intelligent system architecture. End-of-chapter bibliographic and historical comments provide background and point to other works of interest and research. Each chapter also contains numerous student exercises (with solutions provided in an appendix) to reinforce concepts and challenge the learner. A bibliography and index complete this comprehensive work.

Knowledge Representation, Reasoning and Declarative Problem Solving

Knowledge Representation, Reasoning and Declarative Problem Solving
Author :
Publisher : Cambridge University Press
Total Pages : 546
Release :
ISBN-10 : 9781139436441
ISBN-13 : 1139436449
Rating : 4/5 (41 Downloads)

Synopsis Knowledge Representation, Reasoning and Declarative Problem Solving by : Chitta Baral

Baral shows how to write programs that behave intelligently, by giving them the ability to express knowledge and to reason. This book will appeal to practising and would-be knowledge engineers wishing to learn more about the subject in courses or through self-teaching.

Knowledge Graphs for eXplainable Artificial Intelligence: Foundations, Applications and Challenges

Knowledge Graphs for eXplainable Artificial Intelligence: Foundations, Applications and Challenges
Author :
Publisher : IOS Press
Total Pages : 314
Release :
ISBN-10 : 9781643680811
ISBN-13 : 1643680811
Rating : 4/5 (11 Downloads)

Synopsis Knowledge Graphs for eXplainable Artificial Intelligence: Foundations, Applications and Challenges by : I. Tiddi

The latest advances in Artificial Intelligence and (deep) Machine Learning in particular revealed a major drawback of modern intelligent systems, namely the inability to explain their decisions in a way that humans can easily understand. While eXplainable AI rapidly became an active area of research in response to this need for improved understandability and trustworthiness, the field of Knowledge Representation and Reasoning (KRR) has on the other hand a long-standing tradition in managing information in a symbolic, human-understandable form. This book provides the first comprehensive collection of research contributions on the role of knowledge graphs for eXplainable AI (KG4XAI), and the papers included here present academic and industrial research focused on the theory, methods and implementations of AI systems that use structured knowledge to generate reliable explanations. Introductory material on knowledge graphs is included for those readers with only a minimal background in the field, as well as specific chapters devoted to advanced methods, applications and case-studies that use knowledge graphs as a part of knowledge-based, explainable systems (KBX-systems). The final chapters explore current challenges and future research directions in the area of knowledge graphs for eXplainable AI. The book not only provides a scholarly, state-of-the-art overview of research in this subject area, but also fosters the hybrid combination of symbolic and subsymbolic AI methods, and will be of interest to all those working in the field.

Principles of Semantic Networks

Principles of Semantic Networks
Author :
Publisher : Morgan Kaufmann
Total Pages : 595
Release :
ISBN-10 : 9781483221144
ISBN-13 : 1483221148
Rating : 4/5 (44 Downloads)

Synopsis Principles of Semantic Networks by : John F. Sowa

Principles of Semantic Networks: Explorations in the Representation of Knowledge provides information pertinent to the theory and applications of semantic networks. This book deals with issues in knowledge representation, which discusses theoretical topics independent of particular implementations. Organized into three parts encompassing 19 chapters, this book begins with an overview of semantic network structure for representing knowledge as a pattern of interconnected nodes and arcs. This text then analyzes the concepts of subsumption and taxonomy and synthesizes a framework that integrates many previous approaches and goes beyond them to provide an account of abstract and partially defines concepts. Other chapters consider formal analyses, which treat the methods of reasoning with semantic networks and their computational complexity. This book discusses as well encoding linguistic knowledge. The final chapter deals with a formal approach to knowledge representation that builds on ideas originating outside the artificial intelligence literature in research on foundations for programming languages. This book is a valuable resource for mathematicians.