Rational Points on Elliptic Curves

Rational Points on Elliptic Curves
Author :
Publisher : Springer Science & Business Media
Total Pages : 292
Release :
ISBN-10 : 9781475742527
ISBN-13 : 1475742525
Rating : 4/5 (27 Downloads)

Synopsis Rational Points on Elliptic Curves by : Joseph H. Silverman

The theory of elliptic curves involves a blend of algebra, geometry, analysis, and number theory. This book stresses this interplay as it develops the basic theory, providing an opportunity for readers to appreciate the unity of modern mathematics. The book’s accessibility, the informal writing style, and a wealth of exercises make it an ideal introduction for those interested in learning about Diophantine equations and arithmetic geometry.

Algebraic Topology

Algebraic Topology
Author :
Publisher : Springer Science & Business Media
Total Pages : 417
Release :
ISBN-10 : 9783642012006
ISBN-13 : 3642012000
Rating : 4/5 (06 Downloads)

Synopsis Algebraic Topology by : Nils Baas

The 2007 Abel Symposium took place at the University of Oslo in August 2007. The goal of the symposium was to bring together mathematicians whose research efforts have led to recent advances in algebraic geometry, algebraic K-theory, algebraic topology, and mathematical physics. A common theme of this symposium was the development of new perspectives and new constructions with a categorical flavor. As the lectures at the symposium and the papers of this volume demonstrate, these perspectives and constructions have enabled a broadening of vistas, a synergy between once-differentiated subjects, and solutions to mathematical problems both old and new.

Global Homotopy Theory

Global Homotopy Theory
Author :
Publisher : Cambridge University Press
Total Pages : 847
Release :
ISBN-10 : 9781108425810
ISBN-13 : 110842581X
Rating : 4/5 (10 Downloads)

Synopsis Global Homotopy Theory by : Stefan Schwede

A comprehensive, self-contained approach to global equivariant homotopy theory, with many detailed examples and sample calculations.

Advances in Homotopy Theory

Advances in Homotopy Theory
Author :
Publisher : Cambridge University Press
Total Pages : 196
Release :
ISBN-10 : 0521379075
ISBN-13 : 9780521379076
Rating : 4/5 (75 Downloads)

Synopsis Advances in Homotopy Theory by : Ioan Mackenzie James

This volume records the lectures given at a conference to celebrate Professor Ioan James' 60th birthday.

Handbook of Homotopy Theory

Handbook of Homotopy Theory
Author :
Publisher : CRC Press
Total Pages : 982
Release :
ISBN-10 : 9781351251617
ISBN-13 : 1351251619
Rating : 4/5 (17 Downloads)

Synopsis Handbook of Homotopy Theory by : Haynes Miller

The Handbook of Homotopy Theory provides a panoramic view of an active area in mathematics that is currently seeing dramatic solutions to long-standing open problems, and is proving itself of increasing importance across many other mathematical disciplines. The origins of the subject date back to work of Henri Poincaré and Heinz Hopf in the early 20th century, but it has seen enormous progress in the 21st century. A highlight of this volume is an introduction to and diverse applications of the newly established foundational theory of ¥ -categories. The coverage is vast, ranging from axiomatic to applied, from foundational to computational, and includes surveys of applications both geometric and algebraic. The contributors are among the most active and creative researchers in the field. The 22 chapters by 31 contributors are designed to address novices, as well as established mathematicians, interested in learning the state of the art in this field, whose methods are of increasing importance in many other areas.

Galois Cohomology of Elliptic Curves

Galois Cohomology of Elliptic Curves
Author :
Publisher :
Total Pages : 0
Release :
ISBN-10 : 818487023X
ISBN-13 : 9788184870237
Rating : 4/5 (3X Downloads)

Synopsis Galois Cohomology of Elliptic Curves by : John Coates

The genesis of these notes was a series of four lectures given by the first author at the Tata Institute of Fundamental Research. It evolved into a joint project and contains many improvements and extensions on the material covered in the original lectures. Let $F$ be a finite extension of $q$, and $E$ an elliptic curve defined over $F$. The fundamental idea of the Iwasawa theory of elliptic curves, which grew out of Iwasawa's basic work on the ideal class groups of cyclotomic fields, is to study deep arithmetic questions about $E$ over $F$ via the study of coarser questions about the arithmetic of $E$ over various infinite extensions of $F$. At present, we only know how to formulate this Iwasawa theory when the infinite extension is a $p$-adic Lie extension for a fixed prime number $p$. These notes will mainly discuss the simplest non-trivial example of the Iwasawa theory of $E$ over the cyclotomic $zp$-extension of $F$. However, the authors also make some comments about the Iwasawa theory of $E$ over the field obtained by adjoining all $p$-power division points on $E$ to $F$. They discuss in detail a number of numerical examples, which illustrate the general theory beautifully. In addition, they outline some of the basic results in Galois cohomology which are used repeatedly in the study of the relevant Iwasawa modules. The only changes made to the original notes: The authors take modest account of the considerable progress which has been made in non-commutative Iwasawa theory in the intervening years. They also include a short section on the deep theorems of Kato on the cyclotomic Iwasawa theory of elliptic curves.

Generalized Cohomology

Generalized Cohomology
Author :
Publisher : American Mathematical Soc.
Total Pages : 276
Release :
ISBN-10 : 0821835149
ISBN-13 : 9780821835142
Rating : 4/5 (49 Downloads)

Synopsis Generalized Cohomology by : Akira Kōno

Aims to give an exposition of generalized (co)homology theories that can be read by a group of mathematicians who are not experts in algebraic topology. This title starts with basic notions of homotopy theory, and introduces the axioms of generalized (co)homology theory. It also discusses various types of generalized cohomology theories.

Algebraic Topology

Algebraic Topology
Author :
Publisher : American Mathematical Soc.
Total Pages : 366
Release :
ISBN-10 : 9780821851029
ISBN-13 : 0821851020
Rating : 4/5 (29 Downloads)

Synopsis Algebraic Topology by : Mark E. Mahowald

This book will provide readers with an overview of some of the major developments in current research in algebraic topology. Representing some of the leading researchers in the field, the book contains the proceedings of the International Conference on Algebraic Topology, held at Northwestern University in March, 1988. Several of the lectures at the conference were expository and will therefore appeal to topologists in a broad range of areas. The primary emphasis of the book is on homotopy theory and its applications. The topics covered include elliptic cohomology, stable and unstable homotopy theory, classifying spaces, and equivariant homotopy and cohomology. Geometric topics--such as knot theory, divisors and configurations on surfaces, foliations, and Siegel spaces--are also discussed. Researchers wishing to follow current trends in algebraic topology will find this book a valuable resource.

Topology, Geometry and Quantum Field Theory

Topology, Geometry and Quantum Field Theory
Author :
Publisher : Cambridge University Press
Total Pages : 596
Release :
ISBN-10 : 0521540496
ISBN-13 : 9780521540490
Rating : 4/5 (96 Downloads)

Synopsis Topology, Geometry and Quantum Field Theory by : Ulrike Luise Tillmann

The symposium held in honour of the 60th birthday of Graeme Segal brought together leading physicists and mathematicians. Its topics were centred around string theory, M-theory, and quantum gravity on the one hand, and K-theory, elliptic cohomology, quantum cohomology and string topology on the other. Geometry and quantum physics developed in parallel since the recognition of the central role of non-abelian gauge theory in elementary particle physics in the late seventies and the emerging study of super-symmetry and string theory. With its selection of survey and research articles these proceedings fulfil the dual role of reporting on developments in the field and defining directions for future research. For the first time Graeme Segal's manuscript 'The definition of Conformal Field Theory' is published, which has been greatly influential over more than ten years. An introduction by the author puts it into the present context.

Encyclopaedia of Mathematics

Encyclopaedia of Mathematics
Author :
Publisher : Springer Science & Business Media
Total Pages : 595
Release :
ISBN-10 : 9789401512886
ISBN-13 : 9401512884
Rating : 4/5 (86 Downloads)

Synopsis Encyclopaedia of Mathematics by : Michiel Hazewinkel

This is the first Supplementary volume to Kluwer's highly acclaimed Encyclopaedia of Mathematics. This additional volume contains nearly 600 new entries written by experts and covers developments and topics not included in the already published 10-volume set. These entries have been arranged alphabetically throughout. A detailed index is included in the book. This Supplementary volume enhances the existing 10-volume set. Together, these eleven volumes represent the most authoritative, comprehensive up-to-date Encyclopaedia of Mathematics available.