Concise Computer Mathematics

Concise Computer Mathematics
Author :
Publisher : Springer Science & Business Media
Total Pages : 115
Release :
ISBN-10 : 9783319017518
ISBN-13 : 3319017519
Rating : 4/5 (18 Downloads)

Synopsis Concise Computer Mathematics by : Ovidiu Bagdasar

Adapted from a modular undergraduate course on computational mathematics, Concise Computer Mathematics delivers an easily accessible, self-contained introduction to the basic notions of mathematics necessary for a computer science degree. The text reflects the need to quickly introduce students from a variety of educational backgrounds to a number of essential mathematical concepts. The material is divided into four units: discrete mathematics (sets, relations, functions), logic (Boolean types, truth tables, proofs), linear algebra (vectors, matrices and graphics), and special topics (graph theory, number theory, basic elements of calculus). The chapters contain a brief theoretical presentation of the topic, followed by a selection of problems (which are direct applications of the theory) and additional supplementary problems (which may require a bit more work). Each chapter ends with answers or worked solutions for all of the problems.

Foundations of Differential Calculus

Foundations of Differential Calculus
Author :
Publisher : Springer Science & Business Media
Total Pages : 208
Release :
ISBN-10 : 9780387226453
ISBN-13 : 0387226451
Rating : 4/5 (53 Downloads)

Synopsis Foundations of Differential Calculus by : Euler

The positive response to the publication of Blanton's English translations of Euler's "Introduction to Analysis of the Infinite" confirmed the relevance of this 240 year old work and encouraged Blanton to translate Euler's "Foundations of Differential Calculus" as well. The current book constitutes just the first 9 out of 27 chapters. The remaining chapters will be published at a later time. With this new translation, Euler's thoughts will not only be more accessible but more widely enjoyed by the mathematical community.

Elements of Differential Topology

Elements of Differential Topology
Author :
Publisher : CRC Press
Total Pages : 317
Release :
ISBN-10 : 9781439831632
ISBN-13 : 1439831637
Rating : 4/5 (32 Downloads)

Synopsis Elements of Differential Topology by : Anant R. Shastri

Derived from the author's course on the subject, Elements of Differential Topology explores the vast and elegant theories in topology developed by Morse, Thom, Smale, Whitney, Milnor, and others. It begins with differential and integral calculus, leads you through the intricacies of manifold theory, and concludes with discussions on algebraic topol

Advanced Calculus (Revised Edition)

Advanced Calculus (Revised Edition)
Author :
Publisher : World Scientific Publishing Company
Total Pages : 595
Release :
ISBN-10 : 9789814583954
ISBN-13 : 9814583952
Rating : 4/5 (54 Downloads)

Synopsis Advanced Calculus (Revised Edition) by : Lynn Harold Loomis

An authorised reissue of the long out of print classic textbook, Advanced Calculus by the late Dr Lynn Loomis and Dr Shlomo Sternberg both of Harvard University has been a revered but hard to find textbook for the advanced calculus course for decades.This book is based on an honors course in advanced calculus that the authors gave in the 1960's. The foundational material, presented in the unstarred sections of Chapters 1 through 11, was normally covered, but different applications of this basic material were stressed from year to year, and the book therefore contains more material than was covered in any one year. It can accordingly be used (with omissions) as a text for a year's course in advanced calculus, or as a text for a three-semester introduction to analysis.The prerequisites are a good grounding in the calculus of one variable from a mathematically rigorous point of view, together with some acquaintance with linear algebra. The reader should be familiar with limit and continuity type arguments and have a certain amount of mathematical sophistication. As possible introductory texts, we mention Differential and Integral Calculus by R Courant, Calculus by T Apostol, Calculus by M Spivak, and Pure Mathematics by G Hardy. The reader should also have some experience with partial derivatives.In overall plan the book divides roughly into a first half which develops the calculus (principally the differential calculus) in the setting of normed vector spaces, and a second half which deals with the calculus of differentiable manifolds.

Introduction to Differential Calculus

Introduction to Differential Calculus
Author :
Publisher : John Wiley & Sons
Total Pages : 788
Release :
ISBN-10 : 9781118117750
ISBN-13 : 1118117751
Rating : 4/5 (50 Downloads)

Synopsis Introduction to Differential Calculus by : Ulrich L. Rohde

Enables readers to apply the fundamentals of differential calculus to solve real-life problems in engineering and the physical sciences Introduction to Differential Calculus fully engages readers by presenting the fundamental theories and methods of differential calculus and then showcasing how the discussed concepts can be applied to real-world problems in engineering and the physical sciences. With its easy-to-follow style and accessible explanations, the book sets a solid foundation before advancing to specific calculus methods, demonstrating the connections between differential calculus theory and its applications. The first five chapters introduce underlying concepts such as algebra, geometry, coordinate geometry, and trigonometry. Subsequent chapters present a broad range of theories, methods, and applications in differential calculus, including: Concepts of function, continuity, and derivative Properties of exponential and logarithmic function Inverse trigonometric functions and their properties Derivatives of higher order Methods to find maximum and minimum values of a function Hyperbolic functions and their properties Readers are equipped with the necessary tools to quickly learn how to understand a broad range of current problems throughout the physical sciences and engineering that can only be solved with calculus. Examples throughout provide practical guidance, and practice problems and exercises allow for further development and fine-tuning of various calculus skills. Introduction to Differential Calculus is an excellent book for upper-undergraduate calculus courses and is also an ideal reference for students and professionals alike who would like to gain a further understanding of the use of calculus to solve problems in a simplified manner.

Elements of Partial Differential Equations

Elements of Partial Differential Equations
Author :
Publisher : Walter de Gruyter GmbH & Co KG
Total Pages : 308
Release :
ISBN-10 : 9783110374049
ISBN-13 : 3110374048
Rating : 4/5 (49 Downloads)

Synopsis Elements of Partial Differential Equations by : Pavel Drábek

This textbook is an elementary introduction to the basic principles of partial differential equations. With many illustrations it introduces PDEs on an elementary level, enabling the reader to understand what partial differential equations are, where they come from and how they can be solved. The intention is that the reader understands the basic principles which are valid for particular types of PDEs, and to acquire some classical methods to solve them, thus the authors restrict their considerations to fundamental types of equations and basic methods. Only basic facts from calculus and linear ordinary differential equations of first and second order are needed as a prerequisite. The book is addressed to students who intend to specialize in mathematics as well as to students of physics, engineering, and economics.