Practical DataOps

Practical DataOps
Author :
Publisher : Apress
Total Pages : 289
Release :
ISBN-10 : 9781484251041
ISBN-13 : 1484251040
Rating : 4/5 (41 Downloads)

Synopsis Practical DataOps by : Harvinder Atwal

Gain a practical introduction to DataOps, a new discipline for delivering data science at scale inspired by practices at companies such as Facebook, Uber, LinkedIn, Twitter, and eBay. Organizations need more than the latest AI algorithms, hottest tools, and best people to turn data into insight-driven action and useful analytical data products. Processes and thinking employed to manage and use data in the 20th century are a bottleneck for working effectively with the variety of data and advanced analytical use cases that organizations have today. This book provides the approach and methods to ensure continuous rapid use of data to create analytical data products and steer decision making. Practical DataOps shows you how to optimize the data supply chain from diverse raw data sources to the final data product, whether the goal is a machine learning model or other data-orientated output. The book provides an approach to eliminate wasted effort and improve collaboration between data producers, data consumers, and the rest of the organization through the adoption of lean thinking and agile software development principles. This book helps you to improve the speed and accuracy of analytical application development through data management and DevOps practices that securely expand data access, and rapidly increase the number of reproducible data products through automation, testing, and integration. The book also shows how to collect feedback and monitor performance to manage and continuously improve your processes and output. What You Will LearnDevelop a data strategy for your organization to help it reach its long-term goals Recognize and eliminate barriers to delivering data to users at scale Work on the right things for the right stakeholders through agile collaboration Create trust in data via rigorous testing and effective data management Build a culture of learning and continuous improvement through monitoring deployments and measuring outcomes Create cross-functional self-organizing teams focused on goals not reporting lines Build robust, trustworthy, data pipelines in support of AI, machine learning, and other analytical data products Who This Book Is For Data science and advanced analytics experts, CIOs, CDOs (chief data officers), chief analytics officers, business analysts, business team leaders, and IT professionals (data engineers, developers, architects, and DBAs) supporting data teams who want to dramatically increase the value their organization derives from data. The book is ideal for data professionals who want to overcome challenges of long delivery time, poor data quality, high maintenance costs, and scaling difficulties in getting data science output and machine learning into customer-facing production.

Python for DevOps

Python for DevOps
Author :
Publisher : O'Reilly Media
Total Pages : 506
Release :
ISBN-10 : 9781492057666
ISBN-13 : 1492057665
Rating : 4/5 (66 Downloads)

Synopsis Python for DevOps by : Noah Gift

Much has changed in technology over the past decade. Data is hot, the cloud is ubiquitous, and many organizations need some form of automation. Throughout these transformations, Python has become one of the most popular languages in the world. This practical resource shows you how to use Python for everyday Linux systems administration tasks with today’s most useful DevOps tools, including Docker, Kubernetes, and Terraform. Learning how to interact and automate with Linux is essential for millions of professionals. Python makes it much easier. With this book, you’ll learn how to develop software and solve problems using containers, as well as how to monitor, instrument, load-test, and operationalize your software. Looking for effective ways to "get stuff done" in Python? This is your guide. Python foundations, including a brief introduction to the language How to automate text, write command-line tools, and automate the filesystem Linux utilities, package management, build systems, monitoring and instrumentation, and automated testing Cloud computing, infrastructure as code, Kubernetes, and serverless Machine learning operations and data engineering from a DevOps perspective Building, deploying, and operationalizing a machine learning project

Tools and Techniques for Software Development in Large Organizations: Emerging Research and Opportunities

Tools and Techniques for Software Development in Large Organizations: Emerging Research and Opportunities
Author :
Publisher : IGI Global
Total Pages : 223
Release :
ISBN-10 : 9781799818656
ISBN-13 : 1799818659
Rating : 4/5 (56 Downloads)

Synopsis Tools and Techniques for Software Development in Large Organizations: Emerging Research and Opportunities by : Pendyala, Vishnu

The development of software has expanded substantially in recent years. As these technologies continue to advance, well-known organizations have begun implementing these programs into the ways they conduct business. These large companies play a vital role in the economic environment, so understanding the software that they utilize is pertinent in many aspects. Researching and analyzing the tools that these corporations use will assist in the practice of software engineering and give other organizations an outline of how to successfully implement their own computational methods. Tools and Techniques for Software Development in Large Organizations: Emerging Research and Opportunities is an essential reference source that discusses advanced software methods that prominent companies have adopted to develop high quality products. This book will examine the various devices that organizations such as Google, Cisco, and Facebook have implemented into their production and development processes. Featuring research on topics such as database management, quality assurance, and machine learning, this book is ideally designed for software engineers, data scientists, developers, programmers, professors, researchers, and students seeking coverage on the advancement of software devices in today’s major corporations.

Accelerate

Accelerate
Author :
Publisher : IT Revolution
Total Pages : 251
Release :
ISBN-10 : 9781942788355
ISBN-13 : 1942788355
Rating : 4/5 (55 Downloads)

Synopsis Accelerate by : Nicole Forsgren, PhD

Winner of the Shingo Publication Award Accelerate your organization to win in the marketplace. How can we apply technology to drive business value? For years, we've been told that the performance of software delivery teams doesn't matter―that it can't provide a competitive advantage to our companies. Through four years of groundbreaking research to include data collected from the State of DevOps reports conducted with Puppet, Dr. Nicole Forsgren, Jez Humble, and Gene Kim set out to find a way to measure software delivery performance―and what drives it―using rigorous statistical methods. This book presents both the findings and the science behind that research, making the information accessible for readers to apply in their own organizations. Readers will discover how to measure the performance of their teams, and what capabilities they should invest in to drive higher performance. This book is ideal for management at every level.

Data Science on AWS

Data Science on AWS
Author :
Publisher : "O'Reilly Media, Inc."
Total Pages : 524
Release :
ISBN-10 : 9781492079361
ISBN-13 : 1492079367
Rating : 4/5 (61 Downloads)

Synopsis Data Science on AWS by : Chris Fregly

With this practical book, AI and machine learning practitioners will learn how to successfully build and deploy data science projects on Amazon Web Services. The Amazon AI and machine learning stack unifies data science, data engineering, and application development to help level upyour skills. This guide shows you how to build and run pipelines in the cloud, then integrate the results into applications in minutes instead of days. Throughout the book, authors Chris Fregly and Antje Barth demonstrate how to reduce cost and improve performance. Apply the Amazon AI and ML stack to real-world use cases for natural language processing, computer vision, fraud detection, conversational devices, and more Use automated machine learning to implement a specific subset of use cases with SageMaker Autopilot Dive deep into the complete model development lifecycle for a BERT-based NLP use case including data ingestion, analysis, model training, and deployment Tie everything together into a repeatable machine learning operations pipeline Explore real-time ML, anomaly detection, and streaming analytics on data streams with Amazon Kinesis and Managed Streaming for Apache Kafka Learn security best practices for data science projects and workflows including identity and access management, authentication, authorization, and more

The DevOps Handbook

The DevOps Handbook
Author :
Publisher : IT Revolution
Total Pages : 467
Release :
ISBN-10 : 9781942788072
ISBN-13 : 194278807X
Rating : 4/5 (72 Downloads)

Synopsis The DevOps Handbook by : Gene Kim

Increase profitability, elevate work culture, and exceed productivity goals through DevOps practices. More than ever, the effective management of technology is critical for business competitiveness. For decades, technology leaders have struggled to balance agility, reliability, and security. The consequences of failure have never been greater―whether it's the healthcare.gov debacle, cardholder data breaches, or missing the boat with Big Data in the cloud. And yet, high performers using DevOps principles, such as Google, Amazon, Facebook, Etsy, and Netflix, are routinely and reliably deploying code into production hundreds, or even thousands, of times per day. Following in the footsteps of The Phoenix Project, The DevOps Handbook shows leaders how to replicate these incredible outcomes, by showing how to integrate Product Management, Development, QA, IT Operations, and Information Security to elevate your company and win in the marketplace.

Hands-On Devops

Hands-On Devops
Author :
Publisher :
Total Pages : 424
Release :
ISBN-10 : 1788471180
ISBN-13 : 9781788471183
Rating : 4/5 (80 Downloads)

Synopsis Hands-On Devops by : Sricharan Vadapalli

Transform yourself into a specialist in DevOps adoption for Big Data on cloud Key Features Learn the concepts of Bigdata and Devops and Implement them Get Acquainted with DevOps Frameworks Methodologies and Tools A practical approach to build and work efficiently with your big data cluster Get introduced to multiple flavors of tools and platforms from vendors on Hadoop, Cloud, Containers and IoT Offerings In-Depth Technology understanding on Data Sciences, Microservices, Bigdata Book Description DevOps strategies have really become an important factor for big data environments. This book initially provides an introduction to big data, DevOps, and Cloud computing along with the need for DevOps strategies in big data environments. We move on to explore the adoption of DevOps frameworks and business scenarios. We then build a big data cluster, deploy it on the cloud, and explore DevOps activities such as CI/CD and containerization. Next, we cover big data concepts such as ETL for data sources, Hadoop clusters, and their applications. Towards the end of the book, we explore ERP applications useful for migrating to DevOps frameworks and examine a few case studies for migrating big data and prediction models. By the end of this book, you will have mastered implementing DevOps tools and strategies for your big data clusters. What you will learn Learn about the DevOps culture, its frameworks, maturity, and design patterns Get acquainted with multiple niche technologies microservices, containers, kubernetes, IoT, and cloud Build big data clusters, enterprise applications and data science models Apply DevOps concepts for continuous integration, delivery, deployment and monitoring Get introduced to Open source tools, service offerings from multiple vendors Start digital journey to apply DevOps concepts to migrate big data, cloud, microservices, IoT, security, ERP systems Who this book is for If you are a Big Data Architects, solutions provider, or any stakeholder working in big data environment and wants to implement the strategy of DevOps, then this book is for you.

Data Engineering on Azure

Data Engineering on Azure
Author :
Publisher : Simon and Schuster
Total Pages : 334
Release :
ISBN-10 : 9781617298929
ISBN-13 : 1617298921
Rating : 4/5 (29 Downloads)

Synopsis Data Engineering on Azure by : Vlad Riscutia

Build a data platform to the industry-leading standards set by Microsoft’s own infrastructure. Summary In Data Engineering on Azure you will learn how to: Pick the right Azure services for different data scenarios Manage data inventory Implement production quality data modeling, analytics, and machine learning workloads Handle data governance Using DevOps to increase reliability Ingesting, storing, and distributing data Apply best practices for compliance and access control Data Engineering on Azure reveals the data management patterns and techniques that support Microsoft’s own massive data infrastructure. Author Vlad Riscutia, a data engineer at Microsoft, teaches you to bring an engineering rigor to your data platform and ensure that your data prototypes function just as well under the pressures of production. You'll implement common data modeling patterns, stand up cloud-native data platforms on Azure, and get to grips with DevOps for both analytics and machine learning. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the technology Build secure, stable data platforms that can scale to loads of any size. When a project moves from the lab into production, you need confidence that it can stand up to real-world challenges. This book teaches you to design and implement cloud-based data infrastructure that you can easily monitor, scale, and modify. About the book In Data Engineering on Azure you’ll learn the skills you need to build and maintain big data platforms in massive enterprises. This invaluable guide includes clear, practical guidance for setting up infrastructure, orchestration, workloads, and governance. As you go, you’ll set up efficient machine learning pipelines, and then master time-saving automation and DevOps solutions. The Azure-based examples are easy to reproduce on other cloud platforms. What's inside Data inventory and data governance Assure data quality, compliance, and distribution Build automated pipelines to increase reliability Ingest, store, and distribute data Production-quality data modeling, analytics, and machine learning About the reader For data engineers familiar with cloud computing and DevOps. About the author Vlad Riscutia is a software architect at Microsoft. Table of Contents 1 Introduction PART 1 INFRASTRUCTURE 2 Storage 3 DevOps 4 Orchestration PART 2 WORKLOADS 5 Processing 6 Analytics 7 Machine learning PART 3 GOVERNANCE 8 Metadata 9 Data quality 10 Compliance 11 Distributing data

Data Science from Scratch

Data Science from Scratch
Author :
Publisher : "O'Reilly Media, Inc."
Total Pages : 336
Release :
ISBN-10 : 9781491904398
ISBN-13 : 1491904399
Rating : 4/5 (98 Downloads)

Synopsis Data Science from Scratch by : Joel Grus

Data science libraries, frameworks, modules, and toolkits are great for doing data science, but they’re also a good way to dive into the discipline without actually understanding data science. In this book, you’ll learn how many of the most fundamental data science tools and algorithms work by implementing them from scratch. If you have an aptitude for mathematics and some programming skills, author Joel Grus will help you get comfortable with the math and statistics at the core of data science, and with hacking skills you need to get started as a data scientist. Today’s messy glut of data holds answers to questions no one’s even thought to ask. This book provides you with the know-how to dig those answers out. Get a crash course in Python Learn the basics of linear algebra, statistics, and probability—and understand how and when they're used in data science Collect, explore, clean, munge, and manipulate data Dive into the fundamentals of machine learning Implement models such as k-nearest Neighbors, Naive Bayes, linear and logistic regression, decision trees, neural networks, and clustering Explore recommender systems, natural language processing, network analysis, MapReduce, and databases

Data Science on the Google Cloud Platform

Data Science on the Google Cloud Platform
Author :
Publisher : "O'Reilly Media, Inc."
Total Pages : 403
Release :
ISBN-10 : 9781491974537
ISBN-13 : 1491974532
Rating : 4/5 (37 Downloads)

Synopsis Data Science on the Google Cloud Platform by : Valliappa Lakshmanan

Learn how easy it is to apply sophisticated statistical and machine learning methods to real-world problems when you build on top of the Google Cloud Platform (GCP). This hands-on guide shows developers entering the data science field how to implement an end-to-end data pipeline, using statistical and machine learning methods and tools on GCP. Through the course of the book, you’ll work through a sample business decision by employing a variety of data science approaches. Follow along by implementing these statistical and machine learning solutions in your own project on GCP, and discover how this platform provides a transformative and more collaborative way of doing data science. You’ll learn how to: Automate and schedule data ingest, using an App Engine application Create and populate a dashboard in Google Data Studio Build a real-time analysis pipeline to carry out streaming analytics Conduct interactive data exploration with Google BigQuery Create a Bayesian model on a Cloud Dataproc cluster Build a logistic regression machine-learning model with Spark Compute time-aggregate features with a Cloud Dataflow pipeline Create a high-performing prediction model with TensorFlow Use your deployed model as a microservice you can access from both batch and real-time pipelines