Data Mining Using Neural Networks
Download Data Mining Using Neural Networks full books in PDF, epub, and Kindle. Read online free Data Mining Using Neural Networks ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads.
Author |
: Mohammed J. Zaki |
Publisher |
: Cambridge University Press |
Total Pages |
: 779 |
Release |
: 2020-01-30 |
ISBN-10 |
: 9781108473989 |
ISBN-13 |
: 1108473989 |
Rating |
: 4/5 (89 Downloads) |
Synopsis Data Mining and Machine Learning by : Mohammed J. Zaki
New to the second edition of this advanced text are several chapters on regression, including neural networks and deep learning.
Author |
: Oded Maimon |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 431 |
Release |
: 2007-10-25 |
ISBN-10 |
: 9780387699356 |
ISBN-13 |
: 038769935X |
Rating |
: 4/5 (56 Downloads) |
Synopsis Soft Computing for Knowledge Discovery and Data Mining by : Oded Maimon
Data Mining is the science and technology of exploring large and complex bodies of data in order to discover useful patterns. It is extremely important because it enables modeling and knowledge extraction from abundant data availability. This book introduces soft computing methods extending the envelope of problems that data mining can solve efficiently. It presents practical soft-computing approaches in data mining and includes various real-world case studies with detailed results.
Author |
: Xin-She Yang |
Publisher |
: Academic Press |
Total Pages |
: 190 |
Release |
: 2019-06-17 |
ISBN-10 |
: 9780128172179 |
ISBN-13 |
: 0128172177 |
Rating |
: 4/5 (79 Downloads) |
Synopsis Introduction to Algorithms for Data Mining and Machine Learning by : Xin-She Yang
Introduction to Algorithms for Data Mining and Machine Learning introduces the essential ideas behind all key algorithms and techniques for data mining and machine learning, along with optimization techniques. Its strong formal mathematical approach, well selected examples, and practical software recommendations help readers develop confidence in their data modeling skills so they can process and interpret data for classification, clustering, curve-fitting and predictions. Masterfully balancing theory and practice, it is especially useful for those who need relevant, well explained, but not rigorous (proofs based) background theory and clear guidelines for working with big data. Presents an informal, theorem-free approach with concise, compact coverage of all fundamental topics Includes worked examples that help users increase confidence in their understanding of key algorithms, thus encouraging self-study Provides algorithms and techniques that can be implemented in any programming language, with each chapter including notes about relevant software packages
Author |
: L. Padma Suresh |
Publisher |
: Springer |
Total Pages |
: 721 |
Release |
: 2015-12-07 |
ISBN-10 |
: 9788132226741 |
ISBN-13 |
: 8132226747 |
Rating |
: 4/5 (41 Downloads) |
Synopsis Proceedings of the International Conference on Soft Computing Systems by : L. Padma Suresh
The book is a collection of high-quality peer-reviewed research papers presented in International Conference on Soft Computing Systems (ICSCS 2015) held at Noorul Islam Centre for Higher Education, Chennai, India. These research papers provide the latest developments in the emerging areas of Soft Computing in Engineering and Technology. The book is organized in two volumes and discusses a wide variety of industrial, engineering and scientific applications of the emerging techniques. It presents invited papers from the inventors/originators of new applications and advanced technologies.
Author |
: Petra Perner |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 667 |
Release |
: 2010-07-05 |
ISBN-10 |
: 9783642143991 |
ISBN-13 |
: 3642143997 |
Rating |
: 4/5 (91 Downloads) |
Synopsis Advances in Data Mining: Applications and Theoretical Aspects by : Petra Perner
These are the proceedings of the tenth event of the Industrial Conference on Data Mining ICDM held in Berlin (www.data-mining-forum.de). For this edition the Program Committee received 175 submissions. After the pe- review process, we accepted 49 high-quality papers for oral presentation that are included in this book. The topics range from theoretical aspects of data mining to app- cations of data mining such as on multimedia data, in marketing, finance and telec- munication, in medicine and agriculture, and in process control, industry and society. Extended versions of selected papers will appear in the international journal Trans- tions on Machine Learning and Data Mining (www.ibai-publishing.org/journal/mldm). Ten papers were selected for poster presentations and are published in the ICDM Poster Proceeding Volume by ibai-publishing (www.ibai-publishing.org). In conjunction with ICDM four workshops were held on special hot applicati- oriented topics in data mining: Data Mining in Marketing DMM, Data Mining in LifeScience DMLS, the Workshop on Case-Based Reasoning for Multimedia Data CBR-MD, and the Workshop on Data Mining in Agriculture DMA. The Workshop on Data Mining in Agriculture ran for the first time this year. All workshop papers will be published in the workshop proceedings by ibai-publishing (www.ibai-publishing.org). Selected papers of CBR-MD will be published in a special issue of the international journal Transactions on Case-Based Reasoning (www.ibai-publishing.org/journal/cbr).
Author |
: Mohammed J. Zaki |
Publisher |
: Cambridge University Press |
Total Pages |
: 607 |
Release |
: 2014-05-12 |
ISBN-10 |
: 9780521766333 |
ISBN-13 |
: 0521766338 |
Rating |
: 4/5 (33 Downloads) |
Synopsis Data Mining and Analysis by : Mohammed J. Zaki
A comprehensive overview of data mining from an algorithmic perspective, integrating related concepts from machine learning and statistics.
Author |
: Charu C. Aggarwal |
Publisher |
: Springer |
Total Pages |
: 512 |
Release |
: 2018-08-25 |
ISBN-10 |
: 9783319944630 |
ISBN-13 |
: 3319944630 |
Rating |
: 4/5 (30 Downloads) |
Synopsis Neural Networks and Deep Learning by : Charu C. Aggarwal
This book covers both classical and modern models in deep learning. The primary focus is on the theory and algorithms of deep learning. The theory and algorithms of neural networks are particularly important for understanding important concepts, so that one can understand the important design concepts of neural architectures in different applications. Why do neural networks work? When do they work better than off-the-shelf machine-learning models? When is depth useful? Why is training neural networks so hard? What are the pitfalls? The book is also rich in discussing different applications in order to give the practitioner a flavor of how neural architectures are designed for different types of problems. Applications associated with many different areas like recommender systems, machine translation, image captioning, image classification, reinforcement-learning based gaming, and text analytics are covered. The chapters of this book span three categories: The basics of neural networks: Many traditional machine learning models can be understood as special cases of neural networks. An emphasis is placed in the first two chapters on understanding the relationship between traditional machine learning and neural networks. Support vector machines, linear/logistic regression, singular value decomposition, matrix factorization, and recommender systems are shown to be special cases of neural networks. These methods are studied together with recent feature engineering methods like word2vec. Fundamentals of neural networks: A detailed discussion of training and regularization is provided in Chapters 3 and 4. Chapters 5 and 6 present radial-basis function (RBF) networks and restricted Boltzmann machines. Advanced topics in neural networks: Chapters 7 and 8 discuss recurrent neural networks and convolutional neural networks. Several advanced topics like deep reinforcement learning, neural Turing machines, Kohonen self-organizing maps, and generative adversarial networks are introduced in Chapters 9 and 10. The book is written for graduate students, researchers, and practitioners. Numerous exercises are available along with a solution manual to aid in classroom teaching. Where possible, an application-centric view is highlighted in order to provide an understanding of the practical uses of each class of techniques.
Author |
: Stephen I. Gallant |
Publisher |
: MIT Press |
Total Pages |
: 392 |
Release |
: 1993 |
ISBN-10 |
: 0262071452 |
ISBN-13 |
: 9780262071451 |
Rating |
: 4/5 (52 Downloads) |
Synopsis Neural Network Learning and Expert Systems by : Stephen I. Gallant
presents a unified and in-depth development of neural network learning algorithms and neural network expert systems
Author |
: David J. Hand |
Publisher |
: MIT Press |
Total Pages |
: 594 |
Release |
: 2001-08-17 |
ISBN-10 |
: 026208290X |
ISBN-13 |
: 9780262082907 |
Rating |
: 4/5 (0X Downloads) |
Synopsis Principles of Data Mining by : David J. Hand
The first truly interdisciplinary text on data mining, blending the contributions of information science, computer science, and statistics. The growing interest in data mining is motivated by a common problem across disciplines: how does one store, access, model, and ultimately describe and understand very large data sets? Historically, different aspects of data mining have been addressed independently by different disciplines. This is the first truly interdisciplinary text on data mining, blending the contributions of information science, computer science, and statistics. The book consists of three sections. The first, foundations, provides a tutorial overview of the principles underlying data mining algorithms and their application. The presentation emphasizes intuition rather than rigor. The second section, data mining algorithms, shows how algorithms are constructed to solve specific problems in a principled manner. The algorithms covered include trees and rules for classification and regression, association rules, belief networks, classical statistical models, nonlinear models such as neural networks, and local "memory-based" models. The third section shows how all of the preceding analysis fits together when applied to real-world data mining problems. Topics include the role of metadata, how to handle missing data, and data preprocessing.
Author |
: Daniel T. Larose |
Publisher |
: John Wiley & Sons |
Total Pages |
: 240 |
Release |
: 2005-01-28 |
ISBN-10 |
: 9780471687535 |
ISBN-13 |
: 0471687537 |
Rating |
: 4/5 (35 Downloads) |
Synopsis Discovering Knowledge in Data by : Daniel T. Larose
Learn Data Mining by doing data mining Data mining can be revolutionary-but only when it's done right. The powerful black box data mining software now available can produce disastrously misleading results unless applied by a skilled and knowledgeable analyst. Discovering Knowledge in Data: An Introduction to Data Mining provides both the practical experience and the theoretical insight needed to reveal valuable information hidden in large data sets. Employing a "white box" methodology and with real-world case studies, this step-by-step guide walks readers through the various algorithms and statistical structures that underlie the software and presents examples of their operation on actual large data sets. Principal topics include: * Data preprocessing and classification * Exploratory analysis * Decision trees * Neural and Kohonen networks * Hierarchical and k-means clustering * Association rules * Model evaluation techniques Complete with scores of screenshots and diagrams to encourage graphical learning, Discovering Knowledge in Data: An Introduction to Data Mining gives students in Business, Computer Science, and Statistics as well as professionals in the field the power to turn any data warehouse into actionable knowledge. An Instructor's Manual presenting detailed solutions to all the problems in the book is available online.