Complex Systems And Their Applications
Download Complex Systems And Their Applications full books in PDF, epub, and Kindle. Read online free Complex Systems And Their Applications ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads.
Author |
: L. Douglas Kiel |
Publisher |
: |
Total Pages |
: 448 |
Release |
: 2021-06-22 |
ISBN-10 |
: 0472074881 |
ISBN-13 |
: 9780472074884 |
Rating |
: 4/5 (81 Downloads) |
Synopsis Complex Systems in the Social and Behavioral Sciences by : L. Douglas Kiel
Complexity systems are at the heart of behavior
Author |
: |
Publisher |
: Elsevier |
Total Pages |
: 951 |
Release |
: 2011-05-23 |
ISBN-10 |
: 9780080931227 |
ISBN-13 |
: 0080931227 |
Rating |
: 4/5 (27 Downloads) |
Synopsis Philosophy of Complex Systems by :
The domain of nonlinear dynamical systems and its mathematical underpinnings has been developing exponentially for a century, the last 35 years seeing an outpouring of new ideas and applications and a concomitant confluence with ideas of complex systems and their applications from irreversible thermodynamics. A few examples are in meteorology, ecological dynamics, and social and economic dynamics. These new ideas have profound implications for our understanding and practice in domains involving complexity, predictability and determinism, equilibrium, control, planning, individuality, responsibility and so on.Our intention is to draw together in this volume, we believe for the first time, a comprehensive picture of the manifold philosophically interesting impacts of recent developments in understanding nonlinear systems and the unique aspects of their complexity. The book will focus specifically on the philosophical concepts, principles, judgments and problems distinctly raised by work in the domain of complex nonlinear dynamical systems, especially in recent years.-Comprehensive coverage of all main theories in the philosophy of Complex Systems -Clearly written expositions of fundamental ideas and concepts -Definitive discussions by leading researchers in the field -Summaries of leading-edge research in related fields are also included
Author |
: Yaneer Bar-yam |
Publisher |
: CRC Press |
Total Pages |
: 866 |
Release |
: 2019-03-04 |
ISBN-10 |
: 9780429717598 |
ISBN-13 |
: 0429717598 |
Rating |
: 4/5 (98 Downloads) |
Synopsis Dynamics Of Complex Systems by : Yaneer Bar-yam
This book aims to develop models and modeling techniques that are useful when applied to all complex systems. It adopts both analytic tools and computer simulation. The book is intended for students and researchers with a variety of backgrounds.
Author |
: Jinhu Lü |
Publisher |
: Springer |
Total Pages |
: 483 |
Release |
: 2015-08-14 |
ISBN-10 |
: 9783662478240 |
ISBN-13 |
: 3662478242 |
Rating |
: 4/5 (40 Downloads) |
Synopsis Complex Systems and Networks by : Jinhu Lü
This elementary book provides some state-of-the-art research results on broad disciplinary sciences on complex networks. It presents an in-depth study with detailed description of dynamics, controls and applications of complex networks. The contents of this book can be summarized as follows. First, the dynamics of complex networks, for example, the cluster dynamic analysis by using kernel spectral methods, community detection algorithms in bipartite networks, epidemiological modeling with demographics and epidemic spreading on multi-layer networks, are studied. Second, the controls of complex networks are investigated including topics like distributed finite-time cooperative control of multi-agent systems by applying homogenous-degree and Lyapunov methods, composite finite-time containment control for disturbed second-order multi-agent systems, fractional-order observer design of multi-agent systems, chaos control and anticontrol of complex systems via Parrondos game and many more. Third, the applications of complex networks provide some applicable carriers, which show the importance of theories developed in complex networks. In particular, a general model for studying time evolution of transition networks, deflection routing in complex networks, recommender systems for social networks analysis and mining, strategy selection in networked evolutionary games, integration and methods in computational biology, are discussed in detail.
Author |
: Kunihiko Kaneko |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 284 |
Release |
: 2011-06-28 |
ISBN-10 |
: 9783642568619 |
ISBN-13 |
: 3642568610 |
Rating |
: 4/5 (19 Downloads) |
Synopsis Complex Systems: Chaos and Beyond by : Kunihiko Kaneko
This book, the first in a series on this subject, is the outcome of many years of efforts to give a new all-encompassing approach to complex systems in nature based on chaos theory. While maintaining a high level of rigor, the authors avoid an overly complicated mathematical apparatus, making the book accessible to a wider interdisciplinary readership.
Author |
: Kyriakos Vamvoudakis |
Publisher |
: Butterworth-Heinemann |
Total Pages |
: 764 |
Release |
: 2016-07-27 |
ISBN-10 |
: 9780128054376 |
ISBN-13 |
: 0128054379 |
Rating |
: 4/5 (76 Downloads) |
Synopsis Control of Complex Systems by : Kyriakos Vamvoudakis
In the era of cyber-physical systems, the area of control of complex systems has grown to be one of the hardest in terms of algorithmic design techniques and analytical tools. The 23 chapters, written by international specialists in the field, cover a variety of interests within the broader field of learning, adaptation, optimization and networked control. The editors have grouped these into the following 5 sections: "Introduction and Background on Control Theory, "Adaptive Control and Neuroscience, "Adaptive Learning Algorithms, "Cyber-Physical Systems and Cooperative Control, "Applications.The diversity of the research presented gives the reader a unique opportunity to explore a comprehensive overview of a field of great interest to control and system theorists. This book is intended for researchers and control engineers in machine learning, adaptive control, optimization and automatic control systems, including Electrical Engineers, Computer Science Engineers, Mechanical Engineers, Aerospace/Automotive Engineers, and Industrial Engineers. It could be used as a text or reference for advanced courses in complex control systems. • Collection of chapters from several well-known professors and researchers that will showcase their recent work • Presents different state-of-the-art control approaches and theory for complex systems • Gives algorithms that take into consideration the presence of modelling uncertainties, the unavailability of the model, the possibility of cooperative/non-cooperative goals and malicious attacks compromising the security of networked teams • Real system examples and figures throughout, make ideas concrete - Includes chapters from several well-known professors and researchers that showcases their recent work - Presents different state-of-the-art control approaches and theory for complex systems - Explores the presence of modelling uncertainties, the unavailability of the model, the possibility of cooperative/non-cooperative goals, and malicious attacks compromising the security of networked teams - Serves as a helpful reference for researchers and control engineers working with machine learning, adaptive control, and automatic control systems
Author |
: Mohd Hafiz Mohd |
Publisher |
: Springer |
Total Pages |
: 441 |
Release |
: 2022-06-12 |
ISBN-10 |
: 9811626316 |
ISBN-13 |
: 9789811626319 |
Rating |
: 4/5 (16 Downloads) |
Synopsis Modelling, Simulation and Applications of Complex Systems by : Mohd Hafiz Mohd
This book discusses the latest progresses and developments on complex systems research and intends to give an exposure to prospective readers about the theoretical and practical aspects of mathematical modelling, numerical simulation and agent-based modelling frameworks. The main purpose of this book is to emphasize a unified approach to complex systems analysis, which goes beyond to examine complicated phenomena of numerous real-life systems; this is done by investigating a huge number of components that interact with each other at different (microscopic and macroscopic) scales; new insights and emergent collective behaviours can evolve from the interactions between individual components and also with their environments. These tools and concepts permit us to better understand the patterns of various real-life systems and help us to comprehend the mechanisms behind which distinct factors shaping some complex systems phenomena being influenced. This book is published in conjunction with the International Workshop on Complex Systems Modelling & Simulation 2019 (CoSMoS 2019): IoT & Big Data Integration. This international event was held at the Universiti Sains Malaysia Main Campus, Penang, Malaysia, from 8 to 11 April 2019. This book appeals to readers interested in complex systems research and other related areas such as mathematical modelling, numerical simulation and agent-based modelling frameworks.
Author |
: Thomas Deisboeck |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 857 |
Release |
: 2007-06-13 |
ISBN-10 |
: 9780387335322 |
ISBN-13 |
: 0387335323 |
Rating |
: 4/5 (22 Downloads) |
Synopsis Complex Systems Science in Biomedicine by : Thomas Deisboeck
Complex Systems Science in Biomedicine Thomas S. Deisboeck and J. Yasha Kresh Complex Systems Science in Biomedicine covers the emerging field of systems science involving the application of physics, mathematics, engineering and computational methods and techniques to the study of biomedicine including nonlinear dynamics at the molecular, cellular, multi-cellular tissue, and organismic level. With all chapters helmed by leading scientists in the field, Complex Systems Science in Biomedicine's goal is to offer its audience a timely compendium of the ongoing research directed to the understanding of biological processes as whole systems instead of as isolated component parts. In Parts I & II, Complex Systems Science in Biomedicine provides a general systems thinking perspective and presents some of the fundamental theoretical underpinnings of this rapidly emerging field. Part III then follows with a multi-scaled approach, spanning from the molecular to macroscopic level, exemplified by studying such diverse areas as molecular networks and developmental processes, the immune and nervous systems, the heart, cancer and multi-organ failure. The volume concludes with Part IV that addresses methods and techniques driven in design and development by this new understanding of biomedical science. Key Topics Include: • Historic Perspectives of General Systems Thinking • Fundamental Methods and Techniques for Studying Complex Dynamical Systems • Applications from Molecular Networks to Disease Processes • Enabling Technologies for Exploration of Systems in the Life Sciences Complex Systems Science in Biomedicine is essential reading for experimental, theoretical, and interdisciplinary scientists working in the biomedical research field interested in a comprehensive overview of this rapidly emerging field. About the Editors: Thomas S. Deisboeck is currently Assistant Professor of Radiology at Massachusetts General Hospital and Harvard Medical School in Boston. An expert in interdisciplinary cancer modeling, Dr. Deisboeck is Director of the Complex Biosystems Modeling Laboratory which is part of the Harvard-MIT Martinos Center for Biomedical Imaging. J. Yasha Kresh is currently Professor of Cardiothoracic Surgery and Research Director, Professor of Medicine and Director of Cardiovascular Biophysics at the Drexel University College of Medicine. An expert in dynamical systems, he holds appointments in the School of Biomedical Engineering and Health Systems, Dept. of Mechanical Engineering and Molecular Pathobiology Program. Prof. Kresh is Fellow of the American College of Cardiology, American Heart Association, Biomedical Engineering Society, American Institute for Medical and Biological Engineering.
Author |
: Kagan Tumer |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 329 |
Release |
: 2012-12-06 |
ISBN-10 |
: 9781441989093 |
ISBN-13 |
: 1441989099 |
Rating |
: 4/5 (93 Downloads) |
Synopsis Collectives and the Design of Complex Systems by : Kagan Tumer
Many complex systems found in nature can be viewed as function optimizers. In particular, they can be viewed as such optimizers of functions in extremely high dimensional spaces. Given the difficulty of performing such high-dimensional op timization with modern computers, there has been a lot of exploration of computa tional algorithms that try to emulate those naturally-occurring function optimizers. Examples include simulated annealing (SA [15,18]), genetic algorithms (GAs) and evolutionary computation [2,3,9,11,20-22,24,28]. The ultimate goal of this work is an algorithm that can, for any provided high-dimensional function, come close to extremizing that function. Particularly desirable would be such an algorithm that works in an adaptive and robust manner, without any explicit knowledge of the form of the function being optimized. In particular, such an algorithm could be used for distributed adaptive control---one of the most important tasks engineers will face in the future, when the systems they design will be massively distributed and horribly messy congeries ofcomputational systems.
Author |
: Armin Fuchs |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 237 |
Release |
: 2012-09-22 |
ISBN-10 |
: 9783642335525 |
ISBN-13 |
: 3642335527 |
Rating |
: 4/5 (25 Downloads) |
Synopsis Nonlinear Dynamics in Complex Systems by : Armin Fuchs
With many areas of science reaching across their boundaries and becoming more and more interdisciplinary, students and researchers in these fields are confronted with techniques and tools not covered by their particular education. Especially in the life- and neurosciences quantitative models based on nonlinear dynamics and complex systems are becoming as frequently implemented as traditional statistical analysis. Unfamiliarity with the terminology and rigorous mathematics may discourage many scientists to adopt these methods for their own work, even though such reluctance in most cases is not justified. This book bridges this gap by introducing the procedures and methods used for analyzing nonlinear dynamical systems. In Part I, the concepts of fixed points, phase space, stability and transitions, among others, are discussed in great detail and implemented on the basis of example elementary systems. Part II is devoted to specific, non-trivial applications: coordination of human limb movement (Haken-Kelso-Bunz model), self-organization and pattern formation in complex systems (Synergetics), and models of dynamical properties of neurons (Hodgkin-Huxley, Fitzhugh-Nagumo and Hindmarsh-Rose). Part III may serve as a refresher and companion of some mathematical basics that have been forgotten or were not covered in basic math courses. Finally, the appendix contains an explicit derivation and basic numerical methods together with some programming examples as well as solutions to the exercises provided at the end of certain chapters. Throughout this book all derivations are as detailed and explicit as possible, and everybody with some knowledge of calculus should be able to extract meaningful guidance follow and apply the methods of nonlinear dynamics to their own work. “This book is a masterful treatment, one might even say a gift, to the interdisciplinary scientist of the future.” “With the authoritative voice of a genuine practitioner, Fuchs is a master teacher of how to handle complex dynamical systems.” “What I find beautiful in this book is its clarity, the clear definition of terms, every step explained simply and systematically.” (J.A.Scott Kelso, excerpts from the foreword)